218 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Системы зажигания бензиновых двигателей

Системы зажигания автомобиля

Автомобильный мотор еще в первых своих модификациях представлял собой сложную конструкцию, состоящую из ряда систем, работающих воедино. Одним из основных компонентов любого бензинового мотора является система зажигания. Об ее устройстве, разновидностях и особенностях мы сегодня и поговорим.

Система зажигания

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.


Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.

Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.

Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом. Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия. Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.

Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Виды, устройство и принцип работы системы зажигания

Система зажигания двигателя — это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Характерные особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом — замыканием и размыканием контактов цепи прерывателем-распределителем.

Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания — определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.

В чем отличия контактно-транзисторной системы зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.

В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом — отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Классификация систем зажигания бензиновых двигателей

В бензиновом двигателе воспламенение топливной смеси осуществляется искровым разрядом, возникающем между электродами свечи зажигания под действием высокого напряжения.

К системам зажигания предъявляют следующие требования:

-напряжение во вторичной цепи должно быть достаточным для пробоя искрового промежутка свечи, обеспечивая при этом бесперебойное искрообразование (не менее 16 кВ при пуске холодного и 12 кВ при работе прогретого двигателя);

-искра, образующаяся между электродами свечи, должна обладать до­статочной энергией и продолжительностью для воспламенения рабочей смеси (зависит от ее состава, плотности и температуры);

-момент зажигания должен быть строго определенным и соответствовать режиму работы двигателя;

-работа всех элементов системы зажигания должна быть надежной при высоких температурах и механических нагрузках;

-низкий уровень радиопомех при работе системы.

Исходя из этих требований, любая система зажигания характеризуется следующими основными параметрами:

Время накопления энергии катушкой (угол замкнутого состояния контактов) – время от момента начала накопления энергии (конкретно в контактной системе — момента замыкания контактов прерывателя; в других системах — момента срабатывания силового транзистора) до момента возникновения искры (конкретно в контактной системе — момента размыкания контактов прерывателя либо отсечки тока транзистором). Данная величина характеризует величину энергии, накапливаемой катушкой.

Напряжение пробоя — напряжение во вторичной цепи в момент образования искры, фактически, максимальное напряжение во вторичной цепи. Системы зажигания рассчитываются с учетом коэффициента запаса по вторичному напряжению, это значит, что максимально развиваемое катушкой напряжение всегда превышает напряжение пробоя в наихудших условиях работы двигателя, может достигать 20 кВ.

Напряжение горения – напряжение горения электрической дуги, установившееся во вторичной цепи после пробоя электродного зазора. Эта величина значительно меньше напряжения пробоя и составляет единицы кВ.

Время горения — длительность горения электрической дуги. Поджиг топливной смеси происходит при горении дуги, поэтому определение ее характеристик дает очень важную информацию при оценке исправности системы.

Угол опережения зажигания (УОЗ) — угол, на который успевает повернуться коленчатый вал от момента возникновения искры до момента достижения соответствующим цилиндром верхней мертвой точки (ВМТ). Оптимально поджигать смесь до подхода поршня к верхней мертвой точке в такте сжатия, чтобы после достижения поршнем ВМТ газы успели набрать максимальное давление и совершить максимальную полезную работу на такте рабочего хода.

Любая система зажигания четко делится на две части:

— низковольтную (первичную) цепь — включает первичную обмотку катушки зажигания и непосредственно связанные с ней цепи прерывателя, коммутатора и других компонентов в зависимости от устройства конкретной системы.

— высоковольтную (вторичную) цепь — включает вторичную обмотку катушки зажигания, систему распределения высоковольтной энергии, высоковольтные провода, свечи.

Схема простейшей системы зажигания

1. Источник питания — аккумуляторная батаррея (АКБ) или генератор;

2. Преобразователь напряжения — преобразует постоянное напряжение бортовой сети автомобиля в высоковольтный импульс;

3. Устройство управления накоплением энергии — определяет момент начала накопления энергии и момент зажигания;

4. Распределитель зажигания — коммутирует катушку зажигания с одной из свечей в соответствии порядку работы цилиндров;

5. Свечи зажигания — необходимы для образования искрового разряда и зажигания топливной смеси в камере сгорания двигателя.

Свечи устанавливаются в головке цилиндра. Когда импульс высокого напряжения подается на свечу, между ее электродами проскакивает искра, которая и воспламеняет рабочую смесь. Как правило, устанавливается по одной свече на цилиндр. Однако бывают и более сложные системы с двумя свечами на цилиндр.

Системы с механическим распределителем энергии

Классическая (трамблерная) система зажигания, довольно распространенная среди устаревших авто.

Принципиальная схема классической системы зажигания

1. Выключатель зажигания;

2. Источник питания;

4. Катушка зажигания;

5. Механический прерыватель;

6. Вал прерывателя;

7. Свечи зажигания;

Распределитель зажигания, трамблер (distributor) — распределяет высокое напряжение от катушки к свечам цилиндров двигателя. На контактных системах зажигания, как правило, объединен с прерывателем, на бесконтактных — с датчиком импульсов, на более современных либо отсутствует, либо объединен с катушкой зажигания (при этом центральный провод может отсутствовать), коммутатором и датчиками.

Распределитель работает следующим образом. Высокое напряжение, создаваемое во вторичной обмотке катушки зажигания, подается на центральную клемму распределителя зажигания. Вращающийся ротор распределителя (бегунок) образует коммутацию этой центральной клеммы и внешних электродов в такой последовательности, что высокое напряжение направляется к свече зажигания того цилиндра, поршень в котором находится в конце такта сжатия, и там создает искру. Как правило, для четырехцилиндровых двигателей, последовательность работы цилиндров 1-3-4-2. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя. Синхронизация с коленчатым валом обеспечивается за счет постоянной механической связи распределителя зажигания с распределительным валом или любым другим валом, связанным с коленчатым валом при передаточном отношении между ними, равном 2:1.

Механический прерыватель – устройство управления накоплением энергии, замыкает и размыкает питание первичной обмотки катушки зажигания в зависимости от угла поворота распредвала. Контакты прерывателя находятся под крышкой распределителя зажигания.

Параллельно контактам включен конденсатор. Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время разрыва контактов, между ними образуется высокое напряжение, которое приводит к образованию искры, но конденсатор поглощает в себя большую часть энергии и искрение уменьшается до незначительного. При выходе конденсатора из строя, будут сильно обгорать контакты прерывателя.

В этой системе также присутствуют механизмы корректировки опережения зажигания: центробежный и вакуумный регуляторы.

Описанная система отличается простотой конструкции. Недостатками является наличие ненадежных механических элементов, прерыватель коммутирует большие токи, что со временем приводит к выходу его из строя, искрение в прерывателе и распределителе приводит к радиопомехам.

Одной из разновидностей классической системы, частично лишенной недостатков прерывателя, является классическая система с транзисторным коммутатором.

Коммутатор — это транзисторный ключ, который в зависимости от управляющего сигнала, включают или отключают питание первичной обмотки катушки зажигания. В зависимости от устройства конкретной системы зажигания, коммутатор может быть как один, так их может быть и несколько (если в системе зажигания используется несколько катушек).

В этом случае механический прерыватель управляет только транзисторным коммутатором, который, в свою очередь, управляет катушкой. Такая конструкция имеет существенное преимущество перед прерывателем без транзисторного коммутатора — оно заключается в том, что контактный прерыватель коммутирует значительно меньший ток. Следовательно, практически исключается пригорание контактов прерывателя во время размыкания, отсутствует необходимость в конденсаторе. В остальном система полностью аналогична классической системе. Обе описанные системы зажигания с механическим прерывателем имеют общее название — контактные системы зажигания.

Бесконтактные системы зажигания (БСЗ). В этом случае вместо механического прерывателя используется датчик — генератор импульсов с преобразователем сигналов, который управляет только транзисторным коммутатором, который, в свою очередь, управляет катушкой зажигания.

В системах зажигания с транзисторным коммутатором используются датчики трех типов:

Со временем, дополнительной задачей коммутатора зажигания стала зарядка катушки необходимой энергией, т. е. до момента зажигания коммутатор должен предугадать, когда нужно начать зарядку катушки, чтобы получить максимальную энергию искры и избежать перегрева катушки. Причём, он должен это сделать так, чтобы время заряда катушки было приблизительно постоянным.

Для этого коммутатор вычисляет скорость вращения двигателя и в зависимости от нее вычисляет момент замыкания катушки на землю. Другими словами, чем выше обороты двигателя, тем раньше коммутатор будет начинать замыкать катушку на землю, но время замкнутого состояния будет одинаковым.

Системы зажигания со статическим распределением энергии

Данные системы имеют принципиальное отличие от выше описанных. В системах зажигания со статическим распределением энергии DLI (DistributorLess Ignition) отсутствует механический распределитель. Катушки зажигания напрямую соединены со свечами зажигания и распределение напряжения осуществляется на первичной стороне катушек зажигания. Исключается и применение элементов, которые подвержены потерям энергии в них, а также износу. Такой способ распределения напряжения применяется в двух вариантах: с одно- и двухискровыми катушками зажигания.

Системы с одноискровыми катушками зажигания

В одноискровой системе каждая свеча имеет свою индивидуальную катушку зажигания. Блок управления двигателем включает в работу катушки зажигания в соответствии с установленным порядком работы цилиндров. Так как отсутствуют потери энергии в распределителе, то эти катушки зажигания могут быть очень компактных размеров. В основном, они располагаются непосредственно над свечами зажигания.

Неподвижное распределение напряжения с одноискровыми катушками зажигания применимо универсально для любого количества цилиндров. Нет ограничений на диапазоны регулировки опережения угла зажигания. Дополнительным преимуществом является то, что при выходе и строя катушки, перестанет работать только один цилиндр, а система в целом сохранит работоспособность. Однако, здесь необходимо применение датчика вращения коленвала с целью синхронизации работы всей системы с частотой вращения этого вала.

Коммутатор в таких системах может представлять собой один блок для всех катушек зажигания или отдельные блоки для каждой катушки зажигания, кроме того, он может быть интегрирован в электронный блок управления, а также может устанавливаться отдельно. Катушки зажигания также могут стоять как отдельно, так и единым блоком (но в любом случае отдельно от ЭБУ), а кроме того, могут быть объединены с коммутаторами.

Общая схема систем независимого зажигания

1. Высоковольтные провода;

2. Свечи зажигания;

ЭБУ – электронный блок управления двигателем;

КЗ – катушка зажигания.

Одной из наиболее популярных разновидностей таких систем является COP система (Coil on Plug — «катушка на свече»), в ней катушка зажигания ставится прямо на свечу. Таким образом, стало возможным полностью избавится еще от одного ненадежного компонента системы зажигания — высоковольтных проводов.

Общая схема системы COP

В системах с двухискровыми катушками (DIS) на каждые два цилиндра приходится по одной катушке зажигания. Концы вторичной обмотки подключены к свечам зажигания в разных цилиндрах. Цилиндры выбраны так, что при такте сжатия в одном цилиндре во втором происходит такт выпуска (при четном количестве цилиндров). В момент зажигания на обеих свечах зажигания образуется искра на первой катушка дает «рабочую искру», а на второй – «холостую».

Например, в классическом 4-х цилиндровом двигателе в цилиндрах 1 и 4 поршни занимают одно и то же положение (оба находятся в верхней или нижней мертвых точках одновременно) и движутся синхронно, но находятся на разных тактах. Когда цилиндр 1 находится на компрессионном ходу, цилиндр 4 — на такте выпуска, и наоборот.

Общая схема системы DIS

Катушки зажигания в системе DIS могут устанавливаться как отдельно от свечей и связываться с ними высоковольтными проводами, так и прямо на свечах (как в системе COP, но в этом случае высоковольтные провода все равно используются для передачи разряда на свечи смежных цилиндров).

Общая схема системы «DIS-COP»

Неисправности в системе зажигания приводят к пропускам воспламенения топливной смеси в цилиндрах, в результате двигатель не развивает мощность, работает нестабильно, «троит», повышается нагрузка на рабочие цилиндры, что приводит к снижению их времени эксплуатации, увеличению расхода топлива.

10.4 Система зажигания (только бензиновые двигатели)

Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

  • выключатель зажигания;
  • катушка зажигания;
  • прерыватель-распределитель;
  • регуляторы опережения зажигания;
  • свечи зажигания;
  • провода, соединяющие данные элементы.

Система зажигания с распределителем

На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.


Рисунок 10.6 Контактная система зажигания двигателя с распределителем.

Выключатель зажигания

Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя — запитывание потребителей электрическим током от источников питания. Система зажигания в целом — это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

Катушка зажигания

По сути, катушка зажигания — это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

Прерыватель-распределитель

Прерыватель-распределитель (в простонародии — «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать — ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

Примечание
Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

Регуляторы опережения зажигания

Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем — проворачиванием контактов относительно приводного вала в ту или иную сторону.

Свечи зажигания

Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания. Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» — головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм — в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра — довольно мощная, чтобы поджечь топливовоздушную смесь.


Рисунок 10.7 Свеча зажигания.

Микропроцессорная система зажигания

Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще — по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).


Рисунок 10.8 Система зажигания с микропроцессорным управлением.

В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.

Система зажигания

Свеча зажигания бензинового двигателя:
1 — контактная гайка;
2 — оребрение изолятора (барьеры для тока утечки);
3 — контактный стержень;
4 — керамический изолятор;
5 — металлический корпус;
6 — токопроводящий стеклогерметик;
7 — уплотнительное кольцо;
8 — теплоотводящая шайба;
9 — центральный электрод;
10 — тепловой конус изолятора;
11 — рабочая камера;
12 — боковой электрод «масса»;
h — искровой зазор

Работоспособность бензинового двигателя зависит не только от своевременной подачи в его цилиндры топливно-воздушной горючей смеси и последующего удаления продуктов сгорания, но и воспламенения в нужный момент горючей смеси от искры с помощью системы зажигания. Искра проскакивает между электродами свечи зажигания. Свеча вворачивается в резьбовое отверстие, выполненное в головке блока.
Свечи зажигания за многие годы своего существования принципиально мало изменились, но за счет применения новейших материалов и современных технологий стали более надежными и долговечными. Некоторые свечи с платиновыми электродами могут прослужить до 100 тыс. км пробега автомобиля.

Рабочая часть свечи зажигания с платиновыми электродами

Для того чтобы между электродами свечи зажигания проскочила искра, на нее нужно подать высокое напряжение (не менее 20 000 В). На автомобилях, в которых используются источники электрического тока с напряжением 12 В, для получения высокого напряжения применяется катушка зажигания — трансформатор с двумя обмотками (первичной и вторичной), отличающимися числом витков.

Конструкция катушки зажигания:
1 — крышка;
2 — контактное гнездо;
3 — винт;
4 — вывод низкого напряжения;
5 — уплотнительная прокладка;
6 — кольцевой магнитопровод;
7 — первичная обмотка;
8 — вторичная обмотка;
9 — фарфоровый изолятор;
10 — кожух катушки;
11 — трансформаторное масло;
12 — сердечник;
13 — картонная прокладка;
14 — контактная пружина

Катушка зажигания имеет внутренний сердечник. Вторичная обмотка, имеющая большее число витков, намотана вокруг сердечника. Один ее конец соединен с центральным выводом катушки, а второй — с низковольтной клеммой. Первичная обмотка (с меньшим числом витков) намотана поверх вторичной, и ее выводы соединены с низковольтными клеммами.
На вторичной обмотке катушки зажигания высокое напряжение возникает после того, как через первичную обмотку пройдет импульс тока низкого напряжения.

Конструкция датчика-распределителя зажигания:
1 — корпус;
2 — грузик центробежного регулятора;
3 — винт крепления подшипника;
4 — вакуумный регулятор;
5 — пружина вакуумного регулятора;
6 — диафрагма;
7 — штуцер;
8 — магнитопровод ротора;
9 — постоянный магнит;
10 — ротор;
11 — крышка;
12 — помехоподавительный резистор;
13 — выводы;
14 — центральный контакт;
15 — бегунок;
16 — фильц;
17 — винт крепления ротора;
18 — обмотка статора;
19 — винт крепления статора;
20 — статор;
21 — магнитопровод обмотки статора;
22 — опора статора;
23 — подшипник;
24 — пружина грузика;
25 — упорные шайбы;
26 — втулка;
27 — валик;
28 — пластина октан-корректора;
29 — шайба;
30 — пружинное кольцо;
31 — штифт;
32 — муфта привода

Момент опережения зажигания является весьма важным параметром и должен регулироваться в соответствии с изменениями оборотов и нагрузки двигателя. На первых автомобильных двигателях опережение зажигания регулировалось вручную, для чего на приборном щитке автомобиля располагалась специальная рукоятка. Затем на смену ручному регулятору пришел распределитель зажигания.
Под крышкой распределителя, в которую входит один высоковольтный провод от катушки зажигания и выходит несколько проводов, по одному к каждой свече зажигания, расположен центробежный механизм. В этом механизме имеется два грузика, уравновешенные пружинами, которые расходятся при вращении вала распределителя и увеличивают угол опережения зажигания при увеличении оборотов двигателя путем поворота опорной пластины, на которой расположены контакты прерывателя системы зажигания. В дополнение к этому устанавливается вакуумный регулятор, который изменяет момент зажигания в соответствии с нагрузкой (чем выше нагрузка, тем ниже давление во впускном трубопроводе).

Схема контактной системы зажигания:
G — источник энергии (генератор или аккумуляторная батарея);
С1 — конденсатор;
1 — прерыватель;
2 — катушка зажигания;
3 — распределитель зажигания;
4 — искровые свечи

Такая конструкция просуществовала довольно долго. Со временем, механическую контактную систему зажигания заменили на более надежную, бесконтактную.

118. Бесконтактная система зажигания

В бесконтактной системе распределитель зажигания заменен на датчик-распределитель и коммутатор. Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по отдельным свечам зажигания. Работа бесконтактного датчика основана на использовании эффекта Холла. В этой системе еще существовали механические детали, которые не обеспечивали высокой надежности.

Индивидуальная катушка зажигания:
1 — печатная плата;
2 — задающий каскад;
3 — диод EFU;
4 — элемент вторичной обмотки;
5 — провод вторичной обмотки;
6 — контактная металлическая пластина;
7 — стержень высокого напряжения;
8 — разъем первичной цепи;
9 — провод первичной обмотки;
10 — I-образный сердечник (внутренний);
11 — постоянный магнит;
12 — о-образный сердечник (внешний);
13 — пружина;
14 — силиконовая изолирующая оболочка

В современных двигателях механический распределитель уступил место электронным системам. Сейчас его функцию выполняют или отдельные электронные модули, или, чаще, электронный блок управления. Катушки зажигания индивидуальные для каждого цилиндра, иногда для пары цилиндров. Это позволяет обойтись без высоковольтных проводов, повысить напряжение и увеличить надежность системы зажигания. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Cодержание вредных компонентов в отработавших газах при этом несколько снижается.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x
()
x
Adblock
detector