739 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конструкция несущего кузова автомобиля

Несущая система

Несущая система — важнейший элемент любого ТС. Она воспринимает все нагрузки, действующие на машину. Кроме того, несущая система является остовом ТС, к ней скрепятся все основные агрегаты и узлы (двигатель, механизмы трансмиссии, движитель через подвеску и т. д.).

Несущая система любого ТС должна быть достаточно прочной и жесткой при наименьшей массе, обладать высокой надежностью и необходимой технологичностью в производстве, быть достаточно коррозионностойкой, способствовать повышению проходимости машины и понижению ее центра тяжести, позволять наиболее удобно и экономно размещать и закреплять все монтируемые на ней агрегаты и узлы, а также допускать значительные ходы подвески.

Несущие системы колесных машин должны также допускать поворот управляемых колес на большие углы. Кроме общих требований к несущим системам отдельных типов ТС могут предъявляться дополнительные (специальные) требования. Например, необходимо, чтобы кузова легковых автомобилей имели форму, создающую минимальное сопротивление воздуха во время движения, и способствовали обеспечению безопасности и комфорта для водителя и пассажиров, а корпуса военных бронированных машин были пуле- и снарядостойкими.

Различают следующие типы несущих систем ТС: рамы, корпуса, кузова, металлоконструкции прицепов и полуприцепов.

Рамы в качестве несущих элементов используются в основном на грузовых автомобилях общетранспортного и многоцелевого назначения, колесных тягачах и длиннобазных шасси, а также на тракторах и ТС со специальными движителями. Кроме того, рамы имеют некоторые автобусы, гусеничные транспортеры, тягачи и легковые автомобили высшего класса. Рамы относительно просты по конструкции, технологичны в производстве и ремонте, универсальны (например, на одну и ту же раму можно установить различные кузова).

По конструкции рамы подразделяются на три типа: лонжеронные, хребтовые и комбинированные.

Наиболее широко распространены лонжеронные рамы (рис. а—в), состоящие из двух продольных балок (лонжеронов), нескольких поперечных балок (траверс), местных усилителей (там, где это необходимо) и переходных элементов (косынки, накладки и др.).

Лонжероны чаще всего представляют собой тонкостенные балки открытого поперечного сечения. Типичными сечениями являются швеллер (см. рис. а), двутавр и Z-образный профиль (рис. в). Иногда лонжероны имеют замкнутый профиль поперечного сечения (прямоугольник или квадрат). У наиболее распространенных лонжеронов швеллерного типа отношение высоты поперечного сечения к ширине полки составляет 2,8…3,5, а толщина стенки — 5… 10 мм. Балки лонжеронов обычно штампуют из стального листа, реже выполняют из стандартного проката.

Штампованные лонжероны легче и могут иметь переменный профиль по длине рамы (см. рис. а), благодаря чему достигается их повышенная равнопрочность. У большинства рам грузовых автомобилей наибольшее сечение лонжерона находится в средней части, а наименьшее — по краям.

Рис. Конструкции лонжеронных (а, в), хребтовых (г) и комбинированных (д, е) рам

Поперечины, соединяющие лонжероны друг с другом, перпендикулярны к ним (см. рис. а, в) или имеют в плане Х-образную форму (см. рис. б). Их сечения могут быть открытыми или замкнутыми. Как и лонжероны, поперечины обычно штампуют из стального листа и устанавливают по мере возможности регулярно в местах крепления кронштейнов рессор, двигателя и топливных баков, в местах установки оси балансирной тележки и т. д. В рамах автомобилей общетранспортного назначения высота профилей поперечин близка к высоте лонжеронов, что приближает эти конструкции к рамам плоского типа. С увеличением грузоподъемности ТС высота профилей лонжеронов существенно возрастает. Для установки агрегатов используются объемы, заключенные между лонжеронами в пределах их высоты. Поперечины в этом случае уже не выполняются равновысокими с лонжеронами. Размеры сечений поперечин существенно уменьшаются, а их число увеличивается (см. рис. в).

Лонжероны с поперечинами соединяются преимущественно с помощью клепки в холодном состоянии, реже — сварки. Сварные рамы более жесткие. Их недостатками являются сложность ремонта и наличие после сварки остаточных напряжений. Поперечины крепятся к полкам или стенкам лонжеронов. Возможно также их крепление и к полкам, и к стенкам одновременно.

Хребтовые рамы могут быть разъемными и неразъемными. Чаще всего применяются разъемные рамы. Они имеют одну центральную продольную балку, обычно трубчатого сечения (рис. г). Эта балка составлена из картеров агрегатов трансмиссии (коробка передач, главные передачи) и патрубков, соединяющих эти картеры. Патрубки и картеры соединяются друг с другом с большой точностью при помощи призонных шпилек и болтов. Кроме центральной продольной балки хребтовая рама имеет поперечно расположенные кронштейны с лапами, служащими опорами для крепления кабины, грузовой платформы, двигателя и других агрегатов.

Хребтовые рамы имеют следующие преимущества по сравнению с лонжеронными: меньшая масса и материалоемкость машины, так как картеры агрегатов трансмиссии используются в качестве несущих элементов; более высокая крутильная жесткость, что особенно важно для эксплуатируемых в тяжелых дорожных условиях полноприводных многоосных автомобилей; возможность на основе одних и тех же агрегатов и узлов создавать автомобили с разным числом осей и различной базой. К недостаткам таких рам относятся затрудненный доступ к механизмам трансмиссии при обслуживании и ремонте, необходимость использования высокопрочных легированных сталей, повышенная коцструктивная сложность трансмиссии и подвески, высокие требования к точности изготовления и сборке.

Комбинированные рамы (рис. д, е) содержат элементы как лонжеронных, так и хребтовых рам, т. е. имеют центральную балку, лонжероны и поперечинй. Центральная балка обычно располагается в средней части рамы, а.лонжероны с поперечинами — по краям.

Корпуса в качестве несущих систем применяются чаще всего на гусеничных транспортерах и тягачах, бронированных колесных и гусеничных машинах, а также на .амфибийных машинах. Существует большое разнообразие конструкций корпусов. Они различаются по размерам, форме, применяемым материалам, способам соединения элементов корпуса и другим параметрам. Конструкция корпуса зависит от назначения машины, области ее применения, типов сухопутного и водоходного (у амфибийных машин) движителей и т. д.

Корпуса могут быть открытыми и закрытыми. У открытых корпусов профиль поперечного сечения открытый (корытообразный), у закрытых — замкнутый. По конструктивной схеме различают корпуса с несущей рамой и несущие.

Корпуса с несущей рамой применяются на колесных машинах, обладающих плавучестью. У них все основные нагрузки воспринимаются рамой (к ней крепятся все агрегаты и движители), а сам корпус, обеспечивая машине герметичность, плавучесть и остойчивость, испытывает лишь гидростатические и гидродинамические воздействия при движении по воде. Несущий корпус представляет собой единую пространственную несущую конструкцию, воспринимающую все нагрузки.

Несущие корпуса подразделяются на два типа:

Бескаркасные корпуса применяются там, где сама обшивка обеспечивает необходимую прочность и жесткость. Такие корпуса представляют собой жесткие сварные коробки из толстых стальных листов. Ими оборудуют бронированные, а также некоторые небронированные машины малой и средней грузоподъемности. Весьма перспективный материал для несущих бескаркасных корпусов — трехслойные панели типа «сандвич». Внешние, слои таких панелей образованы из тонких листов достаточно плотного материала (обычно алюминиевые сплавы или стеклопластик); внутренний, более широкий слой выполнен из материала с малой плотностью (пенополиуретан). Корпус, изготовленный из панелей типа «сандвич» и отличающийся малой массой в сочетании с высокой прочностью и жесткостью, способен эффективно уменьшать вибрацию и противостоять коррозии.

Несущий корпус каркасного типа включает в себя пространственный стержневой каркас и тонкую листовую обшивку. Каркас состоит из продольных и поперечных балок, вертикальных и наклонных стоек, раскосов и т.д. Элементы каркаса выполняются, как правило, из тонкостенных гнутых профилей и труб круглого или прямоугольного сечения. Листы обшивки приваривают снаружи к элементам каркаса, обеспечивая корпусу герметичность и необходимое водоизмещение (у амфибийных машин). Для увеличения местной жесткости обшивочные листы могут иметь зиги.

Кузова в качестве несущих систем применяются на легковых автомобилях и автобусах. Их конструкции весьма сложны и многообразны. Кузова, как правило, сочетают в себе пространственный каркас, выполненный из штампованных стальных элементов, и обшивку в виде тонкостенных разнопрофильных оболочек. Соединение элементов кузова осуществляется чаще всего с помощью точечной сварки.

По назначению кузова подразделяют на:

  • грузовые
  • пассажирские
  • грузопассажирские
  • специальные (для размещения различного мобильного оборудования)

По характеру воспринимаемых нагрузок различают следующие типы кузовов: несущие (без рамы), полунесущие (они жестко соединены с рамой и воспринимают часть нагрузки, действующей на ТС) и разгруженные (с рамой соединены не жестко, а через упругие прокладки).

В зависимости от типа ТС применительно к кузовам может использоваться и другая классификация. Например, по общей структуре и визуальному восприятию кузова легковых автомобилей могут быть одно-, двух- и трехобъемными.

Металлоконструкции прицепов и полуприцепов имеют сходство с рамами, У прицепов малой и средней грузоподъемности рамы, как правило, плоские. Прицепы, предназначенные для перевозки тяжеловесных грузов (трейлеры), имеют низкую грузовую платформу. Их металлоконструкции чаще всего выполняются пространственными. Полуприцепы имеют рамы глагольного типа (ступенчатые). Это связано с необходимостью понизить уровень грузовой платформы при относительно высоком расположении тягово-сцепного устройства.

Для изготовления рам используют в основном углеродистые и низколегированные стали. Они относительно дешевы и более технологичны в производстве, чем высоколегированные. Кроме того, эти стали легче поддаются гибке и холодной штамповке. Низколегированные стали свариваются хуже, чем углеродистые, и поэтому применяются главным образом в клепаных конструкциях.

Корпусные несущие системы изготавливают из разнообразных материалов, чаще всего из углеродистых сталей. Могут использоваться также легкие сплавы (например, алюминиевые) и пластмассы, которые, уменьшают массу корпуса и повышают его коррозионную стойвдсть.

Для изготовления кузовов легковых автомобилей и автобусов массовых моделей применяются в основном низкоуглеродистые специальные стали. Детали кузова (крылья, арки колес, днище), подверженные сильной коррозии, часто выполняют из оцинкованной стали. В последнее время для изготовления кузовов автомобилей все шире используютря алюминиевые сплавы и пластмассы.

Металлоконструкции прицепов и полуприцепов собирают преимущественно с помощью сварки, что обусловливает выбор материалов для их изготовления. В этом случае чаще всего используют углеродистые стали.

Рама против несущего кузова: что лучше?

Рамный внедорожник — это брутально и круто. Но без рамы, говорят, лучше рулится. В чем брутальность рамы и за счет чего достигается «рулежка» с несущим кузовом — знают далеко не все. И сегодня я предлагаю разобраться в данном вопросе подробно. Давайте рассмотрим конструкции всех трех типов (почему трех, а не двух — объясню далее) и опишем их типичные плюсы и минусы.

Начнем с рамы. Потому что, по-сути, все автомобили изначально строились на ней, и только потом научились строить на кузовах. Итак, если описать принципиальное отличие такой компоновки от несущего кузова, то рамная конструкция имеет возможность отделения кузова от самой рамы . Другими словами, кузов можно от нее открутить и поднять наверх вместе с салоном, как колпак с подноса перед подачей блюда на стол. При этом, рама так и останется стоять на земле: с подвеской, двигателем, трансмиссией и прочими основными узлами. Нет, конечно, всегда есть исключения, но именно такая «бутербродная» конструкция лежала в основе всех (и даже легковых) автомобилей вплоть до 60-70-х годов прошлого века. Сегодня модели настоящих «рамников» стремительно вымирают даже среди внедорожников, а про легковые автомобили и говорить нечего. Какие же преимущества и недостатки дает рамная схема?

  • Прежде всего, это крепость конструкции. Чтобы погнуть или, уж тем более, сломать нормальную раму — нужно хотя бы сбросить автомобиль с высоты пары метров, и желательно, чтобы вся масса пришлась при этом на одно или два колеса. Да, конечно, можно привести кучу примеров, когда рамы деформируются в не самых сильных ДТП, но автомобильные аварии — это вобще такая штука, где все подробности и обстоятельства знают только пострадавшие или очевидцы. Что же касается офицерского состава диванных войск всех рангов, по одному фото из интернета уже раскрывающих обстоятельства любого проишествия не хуже бывалого автоинспектора — сейчас не об этом.
  • Увеличенный дорожный просвет. Во-первых, ввиду того, что с рамой зачастую ставят мосты, которые уже предполагают повышенную проходимость и более совершенную для бездорожья геометрию подвески. А во-вторых, сам кузов элементарно находится выше над землей, так как установлен сверху.
  • Удобство в случае капремонта автомобиля. И снова пляшем от конструктива: сняли кузов, получили хороший доступ к «нутрам» машины, затем надели обратно. Да и кузов капиталить или менять значительно проще. Конечно, на словах всё легко, но если вы интересуетесь автомобилями, то наверняка видели проекты с переборкой старых внедорожников: отдельно стоит шасси, отдельно — кузов. Как ни крути, это удобно.
  • Масса. Да, настоящая стальная рама — это очень тяжелая штука. Отсюда — повышенный расход топлива, снижение динамических характеристик, высокая инерция всего автомобиля, и так далее.
  • Высокий центр тяжести. Очевидно, что такая «этажерка» из рамы и стоящего на ней кузова, сильнее раскачивается и более склонна к опрокидыванию или потере управляемости на скоростях. Сюда же — аэродинамические шумы из-за общей большой высоты автомобиля.
  • При движении вне дорог и на неровностях трясти будет сильнее, чем в кузовном автомобиле. Опять же, в связи с тем, что подвеска просто не может быть излишне мягкой — иначе, не выдержит массы всей конструкции, да и раскачка достигнет неприемлемых величин.

Несущий кузов

Теперь разберемся с обыкновенным несущим кузовом. Да в общем-то, потому и несущий, что несет на себе всю массу агрегатов автомобиля . В этом ему помогают такие детали как подрамники , к которым крепится подвеска, но они есть не всегда и не везде. Сам же кузов сохраняет необходимую жесткость благодаря лонжеронам — это короба закрытого профиля из высокопрочной стали, которые составляют «скелет» кузова и являются его неотъемлемой частью. Что касается эксплуатационных характеристик, то они практически диаметрально-противоположны тем, которые мы записали в минусы рам.

К основным преимуществам несущего кузова относятся следующие моменты :

  • И снова масса. Только теперь она со знаком «плюс»: несущий кузов априори легче рамы. Получаем экономию топлива, шустрый разгон, небольшую инертность и прочие соответствующие плюшки.
  • Центр тяжести, по понятным причинам, ниже. А значит, вышеописанные плюсы меньшей массы только дополняются: предел боковых ускорений для заноса/сноса выше, а при сильных кренах склонность к опрокидыванию на порядок меньше.

В минусы запишем два основных нюанса:

  • Общая прочность всей силовой конструкции автомобиля несравнимо ниже, нежели у рамных тяжеловесов. Конечно, на легковушках прыгать по буеракам никто не заставляет, а если верить рекламе — то с каждым годом модели становятся все более и более жесткими на скручивание и делаются из всё более прочных сортов металла. Видимо, вот-вот — и приблизятся по этому параметру к граниту. Однако, на практике, даже самый крутой кузов лет через пять (а иногда — и сильно раньше) начинает сначала понемногу «поигрывать» на кочках уплотнителями дверей, или некоторыми деталями салона. А у 10-летней машины вполне реальна ситуация, когда встав парой диагонально-противоположных колес на кочки, багажник или двери начнут закрываться с трудом. Это к вопросу про усталостное снижение жесткости несущего кузова.
  • Прямая зависимость надежности кузова и безопасности машины от степени изношенности металла. Особенно актуально для нашей страны, где дороги зачастую сохранили следы бомбежек Великой отечественной, перепады сезонных температур велики, а дороги до сих пор поливают составами, по свойствам схожими с соляной кислотой. И если сквозные дыры на дверях и крыльях еще можно записать в «косметические недочеты», то прогнивший втихаря лонжерон или пол, при аварии может сыграть роковую роль. Согласен: современные автомобили уже изначально рассчитаны на эксплуатацию лет максимум в 15, но ведь есть владельцы, не желающие «просто так» менять свою машину. Да и просто малообеспеченные люди вынуждены «донашивать» автомобили преклонного возраста. И в этом аспекте рама смотрится более выигрышно: риск внезапно отгнившей на ходу от кузова подвески сводится к минимуму, как и вероятность сложиться при аварии «фольгой».

Интегрированная рама

И наконец, переходим к типу конструкции, которая на сегодняшний день практически безраздельно захватила рынок среди моделей повышенной проходимости. Так называемая интегрированная рама является неким гибридом рамы настоящей и обычного легкового несущего кузова . Если в двух словах: это кузов с усиленными лонжеронами под днищем, примерно повторяющими форму настоящей рамы. Такой «хребет» является частью кузова и неотделим от него (в абсолютном большинстве случаев — приварен на конвейере). По такой схеме делаются практически все современные «легендарные внедорожники» (с), которые, как правило, беспомощно буксуют в кучке снега у подъезда и взбираются на городские бордюры с крайней осторожностью, дабы ничем его не задеть и ничего себе не сломать. Такие времена, такие тенденции — ничего не попишешь. Но не об этом.

Я намеренно не буду сейчас выделять преимущества и недостатки такого конструктива. Потому как любое универсальное решение имеет свойство вбирать в себя и то и другое, причем, минусов на выходе обычно получается больше. Конечно, любой кроссовер нынче умеет ездить не хуже иной легковой машины, а вот что касается настоящего бездорожья — здесь плюсов почти и нет. Масса внушительная, но подвеска легковой конструкции. Мотор мощный, но нежная трансмиссия быстро перегревается. Дорожный просвет внушительный, но огромные свесы кузова сводят геометрическую проходимость на нет. Перечислять можно долго. Одним словом: тот случай, когда аспект «хочу быть внедорожником» остается по большей части в мечтах владельца и красивых фотографиях рекламных проспектов.

Так что же лучше: рама, несущий кузов или их гибрид?

А ответ будет, как всегда, на поверхности: не стоит путать кислое с солёным. Несущий кузов отлично подходит для классических легковых автомобилей. То есть для быстрого и комфортного передвижения по дорогам, а не направлениям. Хотите покорять пашни и леса без последствий для машины — купите внедорожник. На раме, с мостами, и нормальным полным приводом без вагона сложной и капризной электроники. Ну, а если мировоззрение строится по принципу «хороший понт дороже денег» — тогда, конечно, кроссовер. Модно, дорого, непрактично. Зато круто! Но всегда помните: съехав с асфальта, есть огромный шанс сесть в лужу. Во всех смыслах этого выражения. 🙂

Надеюсь, кому-то было полезно!
Всем крепких подвесок и поменьше дыр на кузове!

Кузов автомобиля

Любой автомобиль состоит из ряда составных узлов – силовой установки, трансмиссии, ходовой части, систем управления.Чтобы собрать все эти элементы в единую конструкцию и обеспечить их взаимосвязь между собой, используется еще один конструктивный компонент – несущая часть, к которой и осуществляется крепление всех составляющих элементов.

Назначение, конструкция и виды несущей части

По мере развития автомобилестроения было создано несколько видов несущей части. Но несмотря на имеющиеся различные типы, эта составляющая включает в себя один из основных компонентов – кузов автомобиля.

В задачу кузова входит не только крепление составных частей авто, а еще и восприятие всех нагрузок и воздействий окружающей среды, а также обеспечение пространства для размещения пассажиров и груза.

Изначально на автотранспорте применялась несущая часть, состоящая из двух элементов – кузова и рамы. В такой конструкции кузов по большей части принимал на себя только нагрузки, которые создавали пассажиры и груз. Основные же воздействия приходились на раму, которая также выступала основным связующим элементом для составных частей авто (именно к ней крепились узлы и механизмы).

Но существуют и другие виды несущей части. В целом, она подразделяется на:

  1. Рамную;
  2. С несущим кузовом;
  3. Комбинированную.

Рамный вид, как уже отмечено, состоит из двух элементов – рама и кузов автомобиля. Между собой эти элементы соединены посредством эластичных проставок. Изначально он применялся на всех авто. Сейчас же такую компоновку несущей части можно встретить только на грузовиках и внедорожниках (хотя на последних – не всегда). Поскольку кузов в такой конструкции не используется в качестве компонента, к которому крепятся составные элементы, второе название этого типа – с разгруженным кузовом.

Со временем на легковом транспорте рамную конструкцию вытеснил несущий кузов автомобиля. Особенность его заключается в том, что рама, как таковая, отсутствует. При этом все составные части крепятся к кузову. Но поскольку в этом типе вся нагрузка приходится на кузов, в некоторых участках присутствуют усиливающие элементы, повышающие жесткость конструкции. Сейчас этот тип несущей части используется на всех легковых авто, а также кроссоверах и некоторых внедорожниках.

Последний вид – комбинированный, он же – полунесущий кузов автомобиля, отличается тем, что в несущей части присутствуют как рама, так и сам кузов, но при этом они между собой жестко связаны. В такой компоновке воспринимаемая нагрузка распределена между ними, также оба они выступают в качестве элементов для крепления составных узлов. Этот тип несущей части применяется в автобусах.

Конструкция кузова

Как видно, во всех типах несущей части присутствует кузов автомобиля. От этого элемента во многом зависит внешний вид машины, комфортабельность, показатели безопасности. Поскольку на легковых авто наибольшее распространение получил несущий кузов, то в дальнейшем рассматривать будем именно его.

Такой кузов автомобиля представляет собой некий каркас, состоящий из ряда составных частей, к которым крепятся узлы авто, а также внешние элементы, выполняющие определенные функции, включая и декоративные – крылья, двери, капот, крышка багажника, оптические приборы, бампера и прочее.

Конструкция кузова автомобиля включает в себя:

  • основание;
  • переднюю и заднюю часть;
  • боковины;
  • крышу.

Каждая из составных частей состоит из ряда компонентов. Все они соединены между собой при помощи сварки, что обеспечивает необходимую жесткость каркасу.

В качестве основания выступает днище, выполненное в виде щита с подогнутыми краями и проделанным в центральной части тоннелем. Этот тоннель не только повышает жесткость основы, но еще и выступает каналом для прокладки некоторых составных элементов авто – топливных и тормозных трубопроводов, труб системы отвода выхлопных газов, а в задне- и полноприводных авто – еще и для размещения ряда узлов трансмиссии. В некоторых авто в днище дополнительно проделывается ниша для размещения запасного колеса (в задней части).

Одной из основных функций передней части кузова авто является обеспечение пассивной безопасности. При фронтальном столкновении составляющие передка принимают на себя весь удар, и деформируясь гасят энергию. Поскольку для этого необходима достаточно высокая прочность, конструкция передка включает в себя продольные лонжероны. В авто с переднемоторной компоновкой они также выступают в качестве конструкции для крепления мотора. Дополнительно для выполнения этой функции передняя часть может комплектоваться подрамником.

Также в состав этой части входят передний щит, отделяющий мотор от салона, панель для крепления оптики и радиаторной решетки, боковины с колесными арками, которые могут быть выполнены заодно с крыльями. Но зачастую крылья делают съемными, поэтому являются навесной частью, так же, как и бампер с решеткой радиатора. Передняя часть сверху накрывается капотом – специальной крышкой.

Примерно такую же компоновку имеет и задняя часть, но зачастую крылья у нее входят в конструкцию и не являются съемными.

Дополнительно заднее крыло входит в конструкцию боковины кузова. Помимо нее боковина включает в себя пороги – одни из основных элементов, которые на ряду с лонжеронами обеспечивает жесткость конструкции.

К боковинам также относятся стойки – передняя, средняя и задняя, к которым крепиться крыша – цельноштампованный лист металла заданной формы. Съемными элементами этой составляющей являются двери авто.

В целом, днище с порогами и стойки с крышей и дверьми формируют отсек для размещения пассажиров.

Как уже отмечено крепления составных элементов осуществлено при помощи сварки, что делает конструкцию кузова неразъемной, поэтому многие компоненты одновременно относятся к нескольким его составляющим частям.

Стоит сказать, что состав кузова автомобиля может не иметь каких-то определенных частей. К примеру, в кузове кабриолет крыша отсутствует как таковая. Но поскольку в обычной компоновке нагрузка распределяется и на нее (за счет цельной конструкции), и крыша тоже в некоторой мере обеспечивает жесткость, то в кабриолете для компенсации снижения жесткости кузова усиливают пороги и двери.

Компоновка кузовов

На конструктивные особенности кузова автомобиля также влияет и компоновка. Все существующие типы несущей части по этому параметру подразделяются на:

Суть разделения кузовов авто по этому критерию сводится к тому, на сколько частей поделен кузов.

Особенность однообъемной компоновки заключается в том, что разделения между моторным отсеком, салоном и багажником – нет (но это условно). Еще этот вид компоновки называют вагонным.

В авто с таким кузовом передняя часть вообще отсутствует, а двигатель помещен в специальную нишу отсека для размещения пассажиров и груза. Отсутствие разделения между отсеками считается условным потому, что двигатель все же отделен от кабины перегородкой.

Однообъемный кузов автомобиля Tata Nano

В свою очередь однообъемный кузов делится на:

Разница между ними сводится к тому, под что большая часть внутреннего объема кузова отведена. Так, в грузовом для размещения пассажиров отведен совсем незначительный объем, в который входит также и отсек для мотора (по сути, водитель сидит возле, а то и вовсе на двигателе), а все остальное пространство отведено под размещение грузов.

В пассажирском же варианте весь доступный объем предназначен для размещения пассажиров, а под груз выделяется небольшое пространство (которого и вовсе может не быть).

Грузопассажирский кузов отличается тем, что внутренний объем условно делится на два отсека (пассажирский, грузовой). В некоторых случаях все пространство авто заполнено сиденьями для пассажиров, которые можно быстро демонтировать или сложить, тем самым получить грузовой отсек.

Двухобъемный кузов автомобиля включает в себя отдельно переднюю часть, являющуюся моторным отсеком и салон, который совмещен с отсеком для перевозки грузов. Самыми распространенными представителями такой компоновки являются хэтчбек и универсал. Также она используется у внедорожников с кроссоверами.

Двухобъемный кузов кроссовера

В большинстве случаев основная часть салона отведена под размещение пассажиров, а для груза отводится не очень много места. Но если взять универсал, то очень часто конструкторы делают задние сиденья складывающимися, что значительно повышает размеры грузового отсека, делая авто, по сути, грузопассажирским. Для доступа к грузовому отсеку в этом типе предусмотрена отдельная дверь – задняя (в некоторых авто она двойная).

Трехобъемный кузов автомобиля отличается тем, что моторный отсек, салон и грузовой отсек отделены перегородками друг от друга. Основным представителем такой компоновки является седан.

Современные реалии

Напоследок отметим, что конструкторами разработано большое количество разнообразных типов кузовов (перечисленные выше являются основными из них). Из-за этого в некоторых случаях разница между компоновками нивелируется.

К примеру, лифтбек имеет трехобъемную компоновку. Но у него крышка багажника объединена с задним стеклом, поэтому является, по сути, задней дверью. Вот и получается, что вроде и отдельный багажник есть, но в то же время он входит в состав салонного отсека (поскольку открывая багажник получаем одновременно и доступ к салону). И таких примеров несколько.

Но в целом, широкое разнообразие несущих кузовов позволяет делать автомобили разных типов и назначения.

Безопасная конструкция кузова автомобиля

Конструкция кузова автомобиля (рис. 1) должна отвечать многим требованиям. С одной стороны, необходимо снижать его массу и улучшать аэродинамические качества, с другой стороны, все большее значение приобретают факторы пассивной безопасности автомобиля.

Рис. 1. Кузов легкового автомобиля: 1 — подоконная балка; 2 — передняя балка крыши; 3 — лонжерон крыши; 4 — задняя балка крыши; 5 — задняя стойка кузова; 6 — задняя панель; 7 — пол в задней части кузова; 8 — задний лонжерон; 9 — средняя стойка кузова; 10 — поперечина под задним сиденьем; 11 — передняя стойка; 12 — поперечина под сиденьем водителя; 13 — порог; 14 — надколесная ниша; 15 — поперечная балка опор двигателя; 16 — передний лонжерон; 17 — поперечина передняя; 18 — поперечина радиатора

Кузов относится к элементу пассивной безопасности автомобиля и, чтобы в случае ДТП максимально снизить вероятность травм и летальных исходов, должен выполнять основные требования:

  1. Передняя и задняя части автомобиля должны легко деформироваться и при ДТП складываться в «гармошку».
  2. Для выживания пассажиров каркас салона автомобиля должен иметь максимальную жесткость и прочность. Для этого используют прочные и особо прочные стали, а некоторые конструктивные элементы в зоне каркаса автомобиля изготавливают методом горячей штамповки. Такие элементы позволяют уменьшить массу автомобиля, а также увеличить жесткость кузова.
  3. В случае лобового столкновения двигатель должен перемещаться вниз от салона.
  4. Зоны размещения ног в салоне водителя и пассажиров в случае ДТП должны минимально изменяться в объеме и геометрии.
  5. Установка контура безопасности для уменьшения деформации и придания жесткости конструкции салона в виде диагональных и продольных брусьев кузова: в дверях автомобиля, передней и задней панелях салона.
  6. Применение высокопрочных материалов для изготовления стоек автомобиля, обеспечивающих минимальную вероятность деформации крыши и днища салона, а также каркаса дверей.
  7. Защита топливной системы от повреждения должна обеспечиваться жесткой геометрией подвески автомобиля и рациональным расположением топливного бака.
  8. С целью смягчения удара при столкновении с пешеходом или другим объектом необходимо использовать эластичные защитные элементы на переднем бампере.

Жесткая конструкция салона кузова — основа безопасности при аварии. Для достижения высокой прочности кузова используются чрезвычайно прочные материалы, особенно в пассажирском пространстве, где допускаются только минимальные деформации. Чтобы удовлетворить противоречивые требования, конструкцию автомобиля совершенствуют в следующих направлениях:

  • использование алюминиевых и магниевых сплавов;
  • применение высокопрочного листового материала;
  • оптимизация толщины панелей;
  • новые технологии соединения деталей;
  • достижение, по возможности, наименьших зазоров в соединениях.

Для выдерживания внешних нагрузок в легковых автомобилях используются преимущественно несущие кузова. Несущий кузов достаточно легкий, однако благодаря целостной конструкции обладает значительной жесткостью на кручение и на изгиб. Он представляет собой сочетание тонких стальных штампованных листов различной формы, соединенных вместе точечной сваркой.

Передняя и задняя части автомобиля обеспечивают максимальное поглощение энергии во время аварии. Специальные опоры двигателя не допускают его перемещения в салон. Деформация передней и задней частей автомобиля обеспечивается путем продольного складывания, так называемой «гармошки». Для этого коробчатые профили, из которых изготавливается кузов, имеют углубления и выступы в определенных расчетных местах — точках концентрации напряжений.

При фронтальном столкновении особое внимание уделяется минимизации смещения элементов конструкции автомобиля в пространство для ног водителя и пассажира.

Требования к прочности кузова при ударе сзади состоят из жесткости каркаса салона и деформируемости задней части кузова. Защита топливной системы от удара сзади обеспечивается геометрией задней подвески и расположением топливного бака.

При боковом столкновении важнейшими конструктивными элементами, воспринимающими основную энергию бокового удара, являются средняя стойка и двери. При их изготовлении используются сверхвысокопрочные материалы. Центральным звеном системы является средняя стойка, которая переносит возникающие силы на порог и каркас крыши. Двери, усиленные диагональными брусьями безопасности, также гасят чрезмерную энергию столкновения. Таким образом, при боковом столкновении достигается невысокая скорость смятия и минимальное смещение конструктивных элементов внутрь салона.

При расчете передней части автомобиля учитываются дополнительные силы инерции и жесткость таких элементов, как двигатель и колеса.

Первоначальной целью конструкторов является проектирование такого автомобиля, чтобы его внешняя форма способствовала минимизации последствий при основных видах ДТП (при столкновениях, наездах, а также при повреждениях самого транспортного средства).

Наиболее тяжелым травмам подвергаются пешеходы, которые наталкиваются на переднюю часть автомобиля. Последствия столкновения с участием легкового автомобиля могут быть уменьшены лишь конструктивными мерами, которые включают:

  • убираемые фары;
  • спрятанные заподлицо стеклоочистители;
  • заделанные заподлицо с панелями сточные желоба;
  • утопленные дверные ручки.

Определяющими факторами обеспечения безопасности пассажиров являются:

  • деформационные характеристики кузова автомобиля;
  • длина пассажирского отсека, объем пространства для выживания во время и после возникновения столкновения;
  • удерживающие системы;
  • зоны возможного столкновения;
  • система рулевого управления;
  • извлечение пользователей;
  • противопожарная защита.

Для защиты от ударов на легковых автомобилях имеются три различные области, которые в случае аварии должны принимать удар на себя: верхняя, средняя и нижняя поверхности, т.е. соответственно крыша, боковая часть и днище автомобиля. Целью всех мер по защите от удара является минимизация деформации кузова и, следовательно, минимизация риска травматизма пассажиров при ударе. Она достигается за счет того, что возникающие при ударе силы целенаправленно действуют на конкретный компонент структуры кузова (рис. 3). Таким образом, снижается коэффициент деформации деталей, на которые приходится удар, так как возникающие при этом силы распределяются по большей площади.

Рис. 3. Распределение сил при ударе: а — боковой удар; б — лобовой удар

Чтобы силовая конструкция кузова могла соответствовать предъявляемым требованиям, в ней используются прочные и особо прочные стали.

Одним из способов повышения безопасности при изготовлении кузовов является применение многофункциональных литых узлов, имеющих оптимизированные по толщине и массе стенки, а также оптимизированную общую конфигурацию. Такие узлы изготовлены из алюминиевых сплавов и отливаются в вакууме. Эти детали обладают не только высокой прочностью, но и высокой пластичностью. Поэтому их используют преимущественно в составе узлов, заведомо деформируемых при ДТП, например в виде лонжеронов, опор амортизаторных стоек, а также передних и центральных стоек кузова. Например, отливаемый в вакууме лонжерон (рис. 4) обладает рядом преимуществ по сравнению с лонжероном, изготовляемым по обычной технологии. Обе половины лонжерона оптимизированы по толщине стенок, а их конструкция и размещение ребер рассчитаны на строго определенные деформации. Места крепления подвески на нижних частях лонжеронов сконструированы так, что энергия удара расходуется прежде всего на деформацию лонжеронов, а не относительно жесткого подрамника. Обе литые части лонжерона образуют многофункциональную конструкцию: они воспринимают усилия с объединенной подвески двигателя и коробки передач, служат в качестве опор для домкрата и несут проушину для буксировки.

Рис. 4. Передний лонжерон автомобиля Audi A2, установленный на болтах: 1 — лонжерон; 2 — подрамник

Боковой удар или боковое столкновение имеют свою специфику в части повреждения водителя или пассажира при аварии. Запас зоны деформации при боковом столкновении, в отличие от передней или задней части автомобиля, составляет незначительную величину — всего 100…200 мм.

Фирма Faurecia разработала механизм для предотвращения последствий бокового удара (рис. 5). Механизм начинает работать за 0,2 с до столкновения по коду специальных сенсоров. По команде контроллера уже через 60 мс удлиняется изготовленный из сплава «с памятью» (Shape Memory Alloy) стержень 2, установленный под сиденьями поперек кузова автомобиля, выдвигая стальной штырь почти до самой двери. Одновременно срабатывает механизм внутри двери, поворачивая в рабочее положение упор 3. Теперь при боковом ударе дверь не сможет вмяться внутрь кузова. Указанный механизм позволяет уменьшить деформацию двери внутрь кузова на 70 мм.

Рис. 5. Механизм для предотвращения последствий бокового удара: а — исходное состояние механизма; б — рабочее состояние механизма; 1 — штырь; 2 — стержень; 3 — поворотный упор; 4 — возвратная пружина

Работа механизма обратима, так как в нем нет одноразовых пиропатронов. Если аварии не случилось, штанга укоротится до исходной длины, а пружина подтянет штырь обратно.

В процессе разработки кузова, наряду с безопасностью пассажиров, все большее внимание уделяется безопасности пешеходов. Для снижения риска травматизма пешеходов в переднем бампере автомобиля используется эластичный ударопоглощающий (защитный) элемент. Он позволяет достичь определенной зоны деформации передней части кузова при ударе.

Особенностями пассивной безопасности легковых автомобилей с кузовом «кабриолет», у которых отсутствует крыша, является защита пассажиров при опрокидывании автомобиля. В таких автомобилях усилены стойки и двери. Кроме того, за подголовниками задних сидений расположено по одному активному элементу безопасности. Вместе с усиленными стойками активные элементы обеспечивают защиту пространства для выживания при опрокидывании автомобиля (рис. 6).

В состоянии покоя электромагниты элемента безопасности обесточены и удерживают элементы с помощью фиксирующей планки во вдвинутом положении. Если блок управления подушек безопасности распознает столкновение или угрозу опрокидывания автомобиля, на электромагниты подается напряжение и они освобождают элементы безопасности. Находящиеся в сжатом состоянии пружины распрямляются и выдвигают элементы безопасности за 0,25 с.

Рис. 6. Защита пассажиров при опрокидывании автомобиля на примере Volkswagen EOS: 1 — элемент безопасности в исходном положении; 2 — элемент безопасности после срабатывания

Выдвинутые элементы безопасности можно разблокировать механически и вновь вернуть в исходное положение.

Защита при опрокидывании автомобиля срабатывает при помощи блока управления подушек безопасности при сильных лобовых, боковых и задних столкновениях, при опрокидывании автомобиля или при предельном боковом крене.

Конструкция рулевой колонки ограничивает движение рулевого колеса в случае фронтального удара. Конструкция педалей гарантирует соскальзывание в случае удара, уменьшая риск травмы ноги водителя.

Кузов — основа безопасности современного автомобиля. Сочетание специальных сминаемых зон, зон с повышенной энергоемкостью удара, успешное обеспечение прогрессивной деформации — вот лишь некоторые качества, присущие современному безопасному кузову.

Когда тяжесть аварии велика, есть вероятность того, что двигатель и (или) другие силовые агрегаты автомобиля могут проникнуть в его салон. Чтобы избежать этого, салон окружают особой «решеткой безопасности», которая помогает достичь наибольшей защиты водителя и пассажиров в подобных случаях. Такие же элементы жесткости (ребра, трубы и брусья) можно найти и в других элементах автомобиля, например в дверях (защита на случай боковых столкновений). Также в кузове присутствуют области погашения энергии.

Как правило, при тяжелой аварии автомобиль резко и неожиданно замедляется, вплоть до полной остановки. В результате этого тела водителя и пассажиров испытывают колоссальные перегрузки, и в некоторых случаях летальный исход неизбежен. Это означает, что жизненно важно найти способ, который помог бы уменьшить нагрузки на тело человека. Одним из вариантов решения этой задачи является проектирование областей разрушения, которые могли бы снижать энергию столкновения в передней и задней части кузова автомобиля. При этом разрушение автомобиля будет более сильным, так как кузов возьмет на себя значительную часть энергии удара, но пассажиры уцелеют. Обратный эффект может быть при авариях старых автомобилей, когда на машине остаются легкие царапины, а пассажиров приходится везти в реанимацию.

Конструкция современного кузова автомобиля предполагает, что при аварии определенные части кузова деформируются по отдельности.

Кроме того, в конструкции кузова широко применяются высоконапряженные листы металла, благодаря чему кузов становится более жестким, одновременно не увеличивая вес автомобиля.

Для производства кузовных элементов немецкие компании BASF и SGL разработали новый легкий и прочный материал, состоящий из полиамидной смолы и углеродного волокна. Специалисты BASF занимались разработкой новых полимерных матриц, а инженеры SGL готовили проекты термообработки нового материала при высоких температурах и сочетания его с углеродным волокном.

В конструкции новой, четвертой по счету генерации Range Rover компании Land Rover главным материалом является алюминий. Он применен как в постройке кузова, так и в деталях подвески. Новая модель получила цельный алюминиевый кузовной каркас. Благодаря этому конструкторам удалось снизить массу автомобиля на 420 кг, что на 39 % легче, чем масса стального кузова предыдущей модели.

Что такое и из чего состоит кузов легкового автомобиля

Автомобиль состоит из множества элементов, которые слаженно работают вместе. Основными из них принято считать двигатель, ходовую часть и трансмиссию. Однако, все они закреплены на несущей системе, которая и обеспечивает их взаимодействие. Несущая система может быть представлена разными вариантами, но наиболее популярным является кузов автомобиля. Это важный конструктивный элемент, который обеспечивает крепление составных частей транспортного средства, размещение пассажиров и грузов в салоне, а также воспринимает все нагрузки во время движения.

Назначение и требования

Если двигатель называют сердцем автомобиля, то кузов — это его оболочка или тело. Как бы то ни было, именно кузов является самым дорогим элементом машины. Основное его назначение – это защита пассажиров и внутренних компонентов от воздействия окружающей среды, размещение посадочных мест и прочих элементов.

Кузов автомобиля

Как к важному конструктивному элементу к кузову предъявляются определенные требования, среди которых:

  • стойкость к коррозии и долговечность;
  • сравнительно небольшая масса;
  • необходимая жесткость;
  • оптимальная форма, чтобы обеспечить ремонт и обслуживание всех агрегатов автомобиля, удобство погрузки багажа;
  • обеспечение необходимого уровня комфорта для пассажиров и водителя;
  • обеспечение определенного уровня пассивной безопасности при столкновении;
  • соответствие современным стандартам и тенденциям в дизайне.

Компоновка кузовов

Несущая часть автомобиля может состоять из рамы и кузова, только кузова или быть комбинированной. Кузов, который выполняет функции несущей части, так и называется несущим. Именно такой тип наиболее распространен на современных автомобилях.

Также кузов может быть выполнен в трех объемах:

Однообъемный выполняется как цельный корпус, который объединяет отделение для двигателя, пассажирский салон и багажный отсек. Такая компоновка соответствует пассажирским (автобусы, микроавтобусы) и грузопассажирским автомобилям.

Двухобъемный имеет две зоны пространства. Пассажирский салон, объединенный с багажником, и моторный отсек. К такой компоновке относятся хэтчбек, универсал и кроссовер.

Трехобъемный состоит из трех отсеков: пассажирского, отсека для двигателя и багажного отделения. Это классическая компоновка, которой соответствуют седаны.

Разные компоновки можно рассмотреть на рисунке ниже, а более подробно почитать в нашей статье о типах кузовов.

Устройство

Несмотря на разнообразие компоновок, кузов легкового автомобиля имеет общие элементы. Они показаны на рисунке ниже и включают в себя:

  1. Передние и задние лонжероны. Представляют собой прямоугольные балки, которые обеспечивают жесткость конструкции и гашение колебаний.
  2. Передний щит. Отделяет моторный отсек от пассажирского.
  3. Передние стойки. Также обеспечивают жесткость и крепят крышу.
  4. Крыша.
  5. Задняя стойка.
  6. Заднее крыло.
  7. Багажная панель.
  8. Средняя стойка. Обеспечивает жесткость кузова, изготавливается из прочной листовой стали.
  9. Пороги.
  10. Центральный тоннель, где располагаются различные элементы (выхлопная труба, карданный вал и т.д.). Также увеличивает жесткость.
  11. Основание или днище.
  12. Надколесная ниша.

Детальное устройство кузова автомобиля

Конструкция может быть иной в зависимости от типа кузова (седан, универсал, микроавтобус и т.д.). Особое внимание в конструкции уделяется несущим элементам, таким как лонжероны и стойки.

Жесткость

Жесткость – это свойство кузова автомобиля сопротивляться динамическим и статистическим нагрузкам в процессе эксплуатации. Она напрямую влияет на управляемость.

Чем выше жесткость, тем лучше управляемость автомобиля.

Жесткость зависит от типа кузова, общей геометрии, количества дверей, размера машины и окон. Большую роль также играет крепление и положение лобового и заднего стекол. Они могут увеличить жесткость на 20-40%. Для большего увеличения жесткости устанавливаются различные распорки-усилители.

Наиболее устойчивыми считаются хэтчбеки, купе и седаны. Как правило, это трехобъемная компоновка, которая имеет дополнительные перегородки между багажным отделением и двигателем. Недостаточную жесткость показывают кузова типа универсал, пассажирский, микроавтобус.

Есть два параметра жесткости – на изгиб и на кручение. На кручение проверяют сопротивление при давлении в противоположных точках относительно его продольной оси, например, при диагональном вывешивании. Как уже было сказано, современные автомобили имеют цельный несущий кузов. В таких конструкциях жесткость обеспечивается главным образом за счет лонжеронов, поперечных и продольных балок.

Материалы для изготовления и их толщина

Прочность и жесткость конструкции можно увеличить за счет толщины стали, но это скажется на массе. Кузов должен быть легким и одновременно прочным. Это обеспечивается за счет применения низкоуглеродистой листовой стали. Отдельные детали изготавливаются путем штамповки. Затем части прочно соединяются друг с другом точечной сваркой.

Основная толщина стали составляет 0,8-2 мм. Для рамы применяется сталь толщиной 2-4 мм. Наиболее важные детали, такие как лонжероны и стойки, изготавливаются из стали, чаще всего легированной, толщиной 4-8 мм, большегрузные автомобили – 5-12 мм.

Плюс низкоуглеродистой стали в том, что она хорошо подвергается формовке. Можно сделать деталь любой формы и геометрии. Минус в низкой устойчивости к коррозии. Для повышения стойкости к коррозии листы стали подвергаются оцинковке или добавляется медь. Лакокрасочное покрытие также защищает от коррозии.

Наименее важные детали, которые не несут основной нагрузки, изготавливаются из пластмасс или сплавов алюминия. Это снижает вес и стоимость конструкции. На рисунке показаны материалы и их прочность в зависимости от назначения.

Материалы для изготовления кузова

Алюминиевый кузов

Современные конструкторы постоянно ищут способы снижения массы без потери жесткости и прочности. Одним из перспективных материалов является алюминий. Масса алюминиевых деталей в 2005 году в европейских автомобилях составила 130 кг.

Сейчас активно применяется материал пеноалюминий. Это очень легкий и одновременно жесткий материал, который хорошо поглощает удар при столкновении. Пенистая структура обеспечивает высокую термостойкость и шумоизоляцию. Минусом данного материала является его высокая стоимость, примерно на 20% дороже традиционных аналогов. Широко применяют алюминиевые сплавы концерны «Ауди» и «Мерседес». Например, за счет таких сплавов удалось значительно снизить массу кузова Ауди А8. Она составляет всего 810 кг.

Алюминиевый кузов Audi A8

Кроме алюминия рассматриваются пластиковые материалы. Например, инновационный сплав «Fibropur», который по жесткости практически не уступает стальным листам.

Кузов является одним из важнейших конструктивных компонентов любого автомобиля. От него во многом зависит масса, управляемость и безопасность транспортного средства. Качество и толщина материалов сказывается на долговечности и устойчивости к коррозии. Современные автопроизводители все чаще применяют углепластик или алюминий, чтобы снизить массу конструкции. Главное, чтобы кузов смог обеспечить максимально возможную безопасность для пассажиров и водителя в случае столкновения.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x
()
x
Adblock
detector