453 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как правильно подключить диод

Как правильно подключить светодиод

Технические характеристики LED-лампы определяются тремя параметрами: прямым напряжением; номинальным рабочим током; номинальной мощностью.

Самые распространенные чипы с напряжением 3, 6, и 12 вольт.

Если установка осуществляется своими руками, важно знать, как подключить светодиод к бытовой сети, драйверу или другому источнику питания.

Распиновка светодиода

Светодиод – кристалл, дополненный добавками, которые излучают свет в процессе прохождения электротока. Свечение появляется, если на анод подается положительный вольтажа, на катод – отрицательный.

Слово «распиновка» произошло от английского «Pin», которое можно перевести как «вывод» или «ножка». Распиновка светодиода – это определение функций контактов. Они обозначены вместе с предназначением на микросхемах и в таблицах. Схемы достаточно простые, на них видно, куда подключить «плюс», куда «минус». Если лед-лампочка сверхяркая, на ее корпусе или контактах имеется маркировка. Катод – это всегда ножка на широком основании.

Схема подключения

Существует всего 2 схемы подключения светодиодов:

  • к напряжению (подключается резистор);
  • к источнику постоянного тока (блоку питания или драйверу).

Если подключить чипы через резистор, вольтаж стабилизируется до уровня, который превышает снижение на светодиоде. При использовании второго варианта сила электротока стабильная, поэтому резистор не нужен, подключить источник света можно параллельно, последовательно или по смешанной схеме. Перед расчетом важно определить работоспособность и параметры диодов.

Как определить полярность диода

При правильном подключении светодиодов электроток течет в верном направлении, лампочка светится. Если подключить контакты на оборот, свечения нет, возможен выход LED-лампочки из строя. Для предотвращения перед созданием схемы обязательно следует определить полярность.

Использование тестирующих устройств

Мультиметр (тестер) обладает некоторыми преимуществами:

  • определяется плюс и минус;
  • можно узнать цвет света;
  • определяется работоспособность чипа.

Чтобы узнать полярность, нужно:

  • установить прибор на проверку при 2 кОм и коснуться выводов щупами (если на экране значение число 1600–1800, LED-лампочку можно подключать);
  • установить прибор на прозвон, коснуться черным щупом минуса, красным – плюса (на экране должно появиться число);
  • использовать в PNP гнезда C (коллектор) и E (эмиттер) – если в C вставить минус, в E – плюс, исправная лампочка светится.

Внимание! При использовании для тестирования NPN исправный источник света будет работать, если плюс и минус поменять местами.

Визуальное определение полярности

Если лампочка новая, плюсовой контакт всегда длиннее. Некоторые производители помечают минусовой контакт срезом на корпусе или точкой. У б/у диода контакты одной длины. В подобной ситуации может помочь осмотр кристалла. У плюса внутри линзы контакт меньших размеров, минус внешне похож на флажок.

Подключение к источнику питания

Для проверки подходит источник тока на 3-6 В (простая батарейка или аккумулятор). К одному контакту припаивается резистор на 300–470 Ом. Если коснуться анодом плюса, а катодом минуса, исправный диод светится.

В ремонтных мастерских лучшими источниками питания считают батарейки из настенных часов или плат компьютеров на 3 вольта (если электроток до 30 мА). Их на короткое время вставляют между ножками (резистор не нужен). Плюс и минус определяются по свечению.

Как рассчитать ограничительный резистор

Ограничительный резистор нужен при подключении светодиодов к источнику напряжения. Его следует последовательно подключить в цепь. Предназначение – ограничить проходящий через диод электроток.

Формула для вычисления параметров ограничительного резистора: R=(Us – UL)/ I*0,75, где:

  • Us – вольтаж на входе;
  • UL – расчетное напряжение одного диода (2-4 В);
  • I – ток диода (максимально допустимое значение);
  • 0,75 – коэффициент надежности led-лампочки.

Если резистор, соответствующий рассчитанному значению, подобрать не получается, нужно взять деталь с большим номиналом.

По закону Ома формула: R=U/I, где:

  • U – вольтаж при прохождении тока через резистор;
  • I – ток при прохождении через резистор.

Так как U= S- UL, где S – входной ток, в итоге формула для расчета сопротивления все равно: R=(Us – UL)/ I*0,75

Включение светодиода через блок питания без резистора

Блок питания – это прибор, который понижает напряжение. Он бывает трансформаторный или импульсный. Первый нужно подключать прямо к сети, но он к ней не привязан (током не бьет), КПД в пределах 50-70%. Трансформаторный блок питания не способен создать стабильный электроток, при котором LED-лампы работают. В сети должен быть ограничивающий резистор. Но его нельзя считать эффективным (при скачках напряжения греется).

Драйвер – импульсный блок питания, стабилизирующий ток. У него нет выходного напряжения, есть выходная мощность и выходной электроток. Если к схеме подключить исправный драйвер, выдается исключительно тот ток, на который прибор рассчитан. Но это не совсем блок питания, дополненный резистором. В драйвере его заменяет схема, способная подстраиваться под скачки значений вольтажа. Количество светодиодов, которые возможно подключить, ограничивается мощностью драйвера. Резистор в схеме не нужен.

Важно! Лучший вариант для того, чтобы без резистора подключить светодиоды – драйвер. Он не позволяет лед-лампам взять больше ампер, чем им нужно для свечения.

К импульсным блокам питания относятся батарейки мобильных телефонов и аккумуляторы автомобилей, блоки компьютеров, нетбуков, ноутбуков, зарядчики с USB. Если устройство низковольтное, к нему можно подключить светодиод своими руками, сэкономив на покупке драйвера. Если вольт много, нужно подключить регулируемый стабилизатор.

Светодиод (или 2-3) можно подключить даже к обычной батарейке на 1,5, 3 или 5 В.

Как правильно подключать светодиоды

Подключение светодиода возможно только к постоянному электротоку. У каждого источника света этого типа есть инструкция по подключению. Если она затерялась, по производителю можно найти данные в сети интернет и узнать, как правильно подключить конкретные лампочки.

  • определение технических характеристик;
  • составление схемы;
  • вычисление вольтажа всей цепочки;
  • подбор блока питания (драйвера);
  • расчет резистора (если питание от напряжения);
  • определение полярности диодов;
  • пайка схемы;
  • подключение блока (драйвера);
  • подключение к электросети.

Если схема работает, нужно измерить электроток и потребление энергии. При слишком большом значении тока требуется коррекция.

Чтобы не подключать систему охлаждения, лучше покупать лампочки с мощностью 1-3 В на подложке.

Параллельное подключение

Если подключить LED-лампочки параллельно, напряжение на всех равное, общая сила тока – сумма токов лед-ламп. Их характеристики отличаются даже если они принадлежат к одной партии.

Если подключить к схеме одно сопротивление, на каждый чип будет подаваться ток с различным номиналом, один будет светиться слишком ярко, другой на 60-70% от номинального значения. Это значит, что при параллельном подключении каждому диоду требуется отдельное сопротивление.

Подобные схемы используются редко из-за двух недостатков: большого количества элементов и роста нагрузки при выгорании одной лампочки.

Последовательное подключение

Несколько диодов возможно подключить и последовательно (катод одного припаять к аноду другого). Они должны быть одинаковые, блок питания выбирается с мощностью, соответствующей сумме мощности лампочек.

Ток на все лампочки подается одинаковый, напряжение состоит из суммы падения на каждом диоде. То есть, количество лампочек, которые возможно подключить, ограничено показателями падения напряжения (падение – напряжение, которое использовано для свечения).

У последовательного подключения 2 недостатка:

  • если диодов много, у блока питания должен быть большой вольтаж;
  • при перегорании одной лампочки перестают светиться все.

От недостатков можно избавиться, если применять смешанное подключение. Диоды делятся на последовательно соединенные группы, которые соединяются параллельно.

При помощи комбинированного подключения производятся светодиодные ленты.

Как включить светодиод в сеть переменного тока

Многих интересует, как подключить светодиод сети 220 В. Подобное возможно, если ток источника света до 20 мА, напряжение не падает более, чем на 2-3 вольта. Если применить формулу расчета драйвера, получается, что сопротивление должно быть 30 кОм.

Резистор будет греться при снижении вольтажа, поэтому важно знать его мощность.

Для расчетов используется формула: Р=I2R=U2/R, где:

  • U – разность между напряжением сети и падением напряжения на источнике света.

В результате вычислений получается 2 Вт.

В схему включения светодиода обязательно включение дополнительного диода, защищающего от пробоев в ситуациях, когда на выходах светильника возникнет амплитудное напряжение. Недостаток подобной схемы – большие потери энергии из-за выделения тепла.

Более эффективно другое соединение, в которое кроме диода включается конденсатор. Он обеспечивает падение напряжение до требуемого уровня.

Обе схемы упрощенные. Чаще всего они не нужны, так как в большинство светодиодов встроен драйвер, преобразующий 220 В в постоянный вольтаж в пределах 5-24 В.

Без драйвера к электросети возможно подключить светодиодные ленты 220 В, состоящие из 60-и элементов, укомплектованных выпрямителем. То же самое относится к большим СОВ-диодам, в которых 60 лед-кристаллов соединены последовательно. Китайцы начали выпускать модули, укомплектованные стабилизатором (устанавливается на подложку).

Основные выводы

Подключение светодиода возможно через резистор к сети или к блоку питания (драйверу) с постоянным током. Первый вариант подходит для лент и больших диодов. Для подключения к драйверу лучше использовать смешанную схему, если диодов больше 10-и.

Лучшими производителями лед-чипов считаются Osram, Philips, Wolta. Пользователи положительно отзываются о лампочках отечественного производства Navigator, Lisma, Gauss, X-Flash. Из китайских производителей можно отметить изделия Camelion.

При покупке важно учесть, что дешевые источники света лед могут обладать меньшей мощностью, чем указывает производитель. Неизвестные китайские компании экономят стабилизаторах и системах отвода тепла, качестве сборки. На рынке много подделок, только внешне похожих на продукцию популярных производителей. Перед созданием схемы желательно проверить характеристики мультиметром.

При наличии минимального опыта работы и свободного времени с паяльником можно сделать фонарик, настольную лампу, подсветку для аквариума или растений, гирлянды, элементы декора интерьера, подарки.

Использование диодов при установке автосигнализаций

Ещё один элемент, который так же, как и реле, часто используется в установке автосигнализаций — диод.

Диод (от ди- и -од из слова электрод) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть, имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

У нас при установке автосигнализаций тоже применяются полупроводниковые диоды.

Полупроводниковые диоды

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.

Полупроводниковые диоды — очень простые устройства. Кроме оценки силы тока диода, есть три основных вещи, которые вы должны держать в уме:
1. Катод (сторона с полосой)
2. Анод (сторона без полосы)
3. Диод пропускает «-» от катода к аноду (не пропускает «+») и «+» от анода к катоду (не пропускает «-»).

Подключение концевиков дверей с помощью диодов

Немного про использование диодов при подключении автосигнализации к электропроводке автомобиля написано в статье Поиск концевиков.

Встречаются автомобили, у которых нет общей точки концевиков дверей, т.е. все концевики развязаны. Для каждой двери свой концевик. Например, Honda некоторые, Ford, GM и т.д.

При подключении автосигнализации в таких автомобилях можно подцепиться к плафону в салоне и запрограммировать функцию вежливой подсветки, можно тупо все провода концевиков связать вместе.

Первый способ не всегда может пройти. Почему, написано в статье Поиск концевиков.

Второй способ может подойти, если при таком виде подключения не нарушится функциональность некоторых приборов автомобиля. Если у вас на автомобиле на приборной панели показывается открытие каждой двери отдельно — такой способ не подойдёт. Если после установки автосигнализации у вас при открытии любой двери, а не только водительской, начинает пищать зуммер, указывающий об оставленном ключе в замке зажигания, значит, был применён вышеприведенный способ подключения концевиков.

В таких автомобилях при подключении автосигнализации правильнее всего использовать диоды.

Ниже приведены примеры подключения автосигнализации с использованием диодов к отрицательным и положительным концевикам дверей.

Подключение отрицательных концевиков к автосигнализации при помощи диодов

Подключение положительных концевиков к автосигнализации при помощи диодов

Эти же схемы используются при подключении двух датчиков к одному входу (например, удара и наклонного).

Диоды могут использоваться и при установке хитрушек (смотрите в Cхемах хитрушек) и при других обстоятельствах (смотрите Подключение центрального замка в Toyota Harrier).

Как правильно подключать светодиод

В этой статье мы разберемся с тем, что собой представляет светодиод, почему он не является просто «лампочкой» и научимся его правильно подключать к источнику питания.

Содержание

Лампа накаливания

Начнем с простого — кусок провода. Его вольт-амперная характеристика (ВАХ) описывается формулой I=U/R. Фактически, это закон Ома для участка цепи. Увеличили напряжение в 2 раза — сила тока увеличилась так же в 2 раза, и график функции будет выглядеть как прямая линия, наклоненная под некоторым углом к оси X. Рассеиваемая мощность на таком проводнике будет равна W=I*U=U^2/R. Увеличили напругу в 2 раза — рассеиваемая мощность увеличилась в 4-ре. Все предельно ясно.

Теперь посмотрим на ВАХ обычной ламы накаливания:

Рис. 1. ВАХ лампы накаливания.

Можно заметить, что прямую она напоминает только в самом-самом своем начале. Далее сила тока выходит на некоторое значение, которое слабо зависит от изменения силы тока. Почету так? Тут не работает закон Ома? Все просто. Как известно, сопротивление металла увеличивается при увеличении его температуры, а спираль лампы накаливания как-никак нагревательный прибор. И при увеличении напряжения, сила тока так же увеличивается, увеличивается рассеиваемая на спирали мощность и она сильнее разогревается, ее сопротивление начинает увеличиваться, ток начинает падать устаканивается на каком-то определенном значении. Можно сказать, что сопротивление лампы накаливания зависит от напряжения, приложенного к ней, поэтому ВАХ лампы накаливания будет иметь вид, не похожий на ВАХ простого проводника (при условии, что мы не будем пропускать через проводник такой ток, что он превратится в печку).

Из графика видно, что при увеличении напряжения в 2 раза, а именно с 2-х вольт до 4-х, ток возрастет с 0,2А до

0,225А, а рассеиваемая мощность увеличится в W2/W1=(4*0.225)/(2*0.2)=2.25 раз, а не в 4, как с простым куском провода. Поэтому лампа накаливания может с легкостью пережить серьезные перегрузки без повреждений (по крайней мере качественные экземпляры, а не тот шлак, который сейчас продается повсеместно).

Но это справедливо только для плавного изменения напряжения на лампочке, то есть когда все переходные процессы, связанные с изменением температуры спирали намного быстрее скорости изменения напряжения на ней. Если же это условие не соблюдается, например, в момент включения, когда спираль еще холодная, сила тока через лампу накаливания при данном напряжении может превышать значение из графика в несколько раз. Поэтому лампы накаливания чаще дохнут в момент включения. Раз уже взялись за лампочки, то давайте разберемся, почему это так.

В идеальном случае нить накаливания однородна на всей своей длине. Но ни чего идеального в мире нет, в том числе и спиралей у лампочек. Всегда найдутся участки, которые чуть-чуть тоньше, чем средняя толщина спирали по всей длине. А если участок тоньше, то его сопротивление больше (следует из формулы сопротивления проводника, R=[ρ∗l]/S).

Разобьем спираль лампы накаливания на небольшие и равные участки, и обозначим их как резисторы. При этом, у нас есть участок, сопротивление которого в 10 раз больше остальных. Вычислим рассеиваемую мощность на каждом резисторе. При этом не забываем, что при последовательном соединении сила тока во всех резисторах одинакова.

Рис. 2. Эквивалентная схема участка нити накала лампочки

Получаем, что на участках с сопротивлением 1R, рассеивается мощность W=1RI², а для участка с сопротивлением 10R W=10RI². Вот и получаем, что мааааленький участок спирали будет иметь локальный перегрев. А если учесть то, что пусковой ток лампочки довольно большой, этот участок будет деградировать быстрее, рассеиваемая мощность будет расти еще больше, и в один прекрасный момент, спираль перегорит. Вот так.

Для того, чтобы продлить срок службы ламп накаливания одни советуют вообще их не выключать, другие снижать действующее напряжение питания лампы путем последовательного включения полупроводникового диода. Так же есть специальные схемы плавного пуска, которые ограничивают пусковой ток и плавно разогревают спираль.

Светодиоды

Так, с лампочками разобрались. Перейдем к светодиодам. ВАХ диода, в том числе который и свето, имеет следующий вид:

Рис. 3. ВАХ светодиода

Во-первых, характеристика имеет два ярко выраженных участка, прямого и обратного тока. В обратном направлении светодиод плохо пропускает ток, поэтому, если подключить светодиод «не той стороной», то он светиться не будет. Но нас интересует участок прямого тока, который является экспоненциально возрастающим. В этом и кроется причина того, почему светодиод нельзя напрямую подключать к батарейке. Например, при напряжении 2 вольта ток через диод составляет 20 мА, а при 2,1 вольт уже 40 мА. То есть, при небольшом увеличении напряжения, ток увеличивается в 2 раза. А если подключить такой диод к 3-х вольтной батарейке, то ток будет уже за 150 мА, и светодиод «спасибо» не скажет за такое обращение (про подключение светодиода к компьютерным «таблеткам» см. а конце статьи). Поэтому необходимо ограничивать ток через светодиод с помощью резистора.

Расчет резистора очень простой. Для начала обозначим Ucc — напряжение батарейки (или от чего вы там его питать будете), Ur — напряжение на резисторе, Ud — требуемое напряжение на светодиоде, I — требуемый ток через светодиод, R — искомое сопротивление.

Вывод формулы занимает всего 4 строчки:

И вот небольшая памятка:

Рис. 4. Включение одного светодиода

А как подключить два светодиода? Многие начинающие радиолюбители соединяют два светодиода параллельно, и используют один токоограничительный резистор:

Рис. 5. Неправильное включение 2-х светодиодов

Но такое включение неверное. И вот почему. Рассмотрим, как течет ток в этой цепи. От источника питания, ток I протекает через резистор R1. Затем, в точке разветвления он распределяется на два разных тока I1 и I2. Пройдя через светодиоды D1, D2, ток снова попадает на точку разветвления и превращается в I. При параллельном соединении проводников для токов справедливо правило: I=I1+I2, при этом напряжения на светодиодах D1 и D2 будут одинаковыми: U1=U2=U. Чем это чревато? У светодиодов есть некий разброс параметров, поэтому, если взять два светодиода и измерить их вольт-амперные характеристики, то они будут отличаться, особенно, если светодиоды разного цвета свечения:

Рис. 6. ВАХ 2-х разных светодиодов в одних координатах

На рис. 6 представлены две ВАХ. Пусть напряжение U на светодиодах будет 1,5 вольта. При данном напряжении ток через один светодиод составляет 4,33 мА, а через другой 13,2!! То есть, один из светодиодов будет потреблять довольно большой ток, при этом другому будет доставаться очень мало. Эта ситуация приведет к тому, что светодиоды будут иметь разную яркость свечения. Такая ситуация особенно заметна при параллельном соединении двух светодиодов разных цветов.

А вот правильное подключение:

Рис. 7. Правильное включение 2-х светодиодов

В этом случае ток через оба светодиода будет одинаковым, и оба светодиода будут гореть одинаково. А как рассчитать значение сопротивления R1? Все почти так же, как и для одного светодиода, только напряжение Ud будет равно

и сопротивление токоограничительного резистора будет равно

Значения U1 и U2 можно определить следующим способом. Выбираем значение силы тока I равное, например, 10 мА. По графику ВАХ смотрим, какому напряжению соответствует заданное значение силы тока для первого и второго светодиода. Это и будут напряжения U1 и U2.

Но это все для случая, когда характеристики диодов отличаются сильно (при заданном I напряжения U1 и U2 отличаются сильно). Если же светодиоды одинаковые, то можно работать с такой формулой:

Udср. — значение напряжения на одном любом светодиоде в цепи для данного значения силы тока. Если у нас последовательно соединено не 2 светодиода а больше, то цифру «2» в формуле заменяем на их количество.

Есть один немаловажный момент: во всех формулах Ucc должно быть больше напряжения на светодиоде, или их группе. В противном случае у нас получится отрицательное значение токоограничительного резистора. Пойдите на радиорынок и в ларьке с радиодеталями попросите вам продать резистор, с сопротивлением минус 100 Ом. Запомните выражение фейса у продавца))

Вот, хорошо я тут все расписал, с формулками и объяснениями, что откуда берется. А где брать эти вольт-амперные характеристики на конкретный светодиод и какой ток будет оптимальным? Вот, нате табличку:

Табл. 1. Оптимальные значения токов и напряжений для разных типов светодиодов

В первой колонке обозначен тип светодиода, во второй оптимальный ток свечения, в третьей — напряжение на светодиоде при данном токе через него (фактически, в таблице указана одна точка ВАХ для каждого типа светодиода, имеющая оптимальное значение яркости свечения). Надо только эти значения подставить в нужную формулу и все! Ладно-ладно, посчитаю это в экселе, чтоб потом не заморачиваться с формулами.

Табл. 2. Значения токоограничительных резисторов

Разберемся, что тут у нас. В первой колонке тип светодиода, во второй напряжение, от которого вы хотите питать конструкцию, привел значения от 3-х до 24-х вольт. В третьей колонке «R(1)» значение токоограничительного резистора для одного светодиода, как на рис. 4. Колонка «R(2)» — сопротивление токоограничительного резистора для 2-х последовательно соединенных диодов (рис. 7), ну а колонка «R(3)» — для 3-х последовательно включенных диодов. В некоторых ячейках таблицы вместо значения сопротивления стоит слово «[нет]». Это значит, что данного напряжения питания недостаточно, чтобы зажечь конструкцию из одного или n светодиодов на полную яркость. Например, сверхяркий 5 мм. светодиод требует ток 75 мА, при этом напряжения на нем будет 3,6 вольт. Если его напрямую подключить к 3-х вольтовой батарейке, то ни чего страшного не произойдет, просто на полную яркость он гореть не будет.

Как пользоваться таблицей? Есть у нас желтый светодиод 3 мм. Хотим питать его от кроны 9 вольт. Ищем в таблице кусок, относящийся к «3 и 5 мм желтый«, выбираем в колонке «Ucc» значение «9» и смотрим, что у нас написано в колонке «R(1)«. Там у нас 345 Ом. Из стандартных номиналов ближе всего 330 Ом, вот его и ищем у себя в ящике с хламом. А если хотим собрать гирлянду из 3-х таких светодиодов (по аналогии, как на рис. 7), и питать хотим от аккума 12 вольт, то сопротивление резюка следует взять близким к 285 Ом, из стандартных это 270 Ом. Стандартные значения резисторов можно посмотреть в этой таблице:

Табл. 3. Стандартные значения резисторов

Ну, вроде все. Теперь мы гуру в схемах со светодиодами))

«Питал я светодиод от 3-х вольтовой таблетки без всяких резисторов, и ни чего не сгорело». На это отвечу так: есть такое понятие, как внутреннее сопротивления источника питания. Для разных источников оно разное. Для автомобильного аккумулятора 12 В оно должно составлять миллиОмы, или даже микроОмы, а вот у компьютерной «таблетки» внутреннее сопротивление может быть как раз несколько десятков Ом. То есть эквивалентная схема любого источника питания следующая:

Рис.8. Эквивалентная схема батарейки

EMF — электро-движущая сила, ее как раз и указывают на корпусе, как напряжение батарейки, R_INT — то самое внутреннее сопротивление. Вот и получается, что подключая светодиод к компьютерной «таблетке» мы сами того не подозревая, последовательно включаем и токоограничительный резистор, который и спасает диод от перегорания.

Вот теперь точно все! Не забывайте про резистор и внутреннее сопротивление источника питания;)

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x
()
x
Adblock
detector