27 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как уменьшить сопротивление качению легкового автомобиля

Уменьшение сопротивления качению автомобиля

Одним из главных требований, предъявляемым к шинам легковых автомобилей и связанным с топливной экономичностью, является наименьшее значение коэффициента сопротивления качению. Кроме того, шины должны обладать хорошей устойчивостью и управляемостью, не допускать заноса автомобиля при отклонениях колеса от направления движения.

Потеря контакта с поверхностью дороги наступает при наличии на ней значительного слоя воды. В этом случае возникает эффект жидкостного трения, подобного трению в подшипнике, и шина скользит по воде. При помощи соответствующего рисунка протектора можно обеспечить отвод воды в сторону, чтобы в контакте шины с поверхностью дороги не образовывался слой воды, на котором шина теряет управляемость и возникает опасный эффект «аквапланирования».

Шины с изношенным протектором намного опаснее с точки зрения вышеизложенного эффекта, чем новые. Зависимость коэффициента сцепления от скорости автомобиля и толщины слоя воды для новых и изношенных шин показана на рис. 1. При падении коэффициента сцепления ниже 0,05 автомобиль становится неуправляемым.

С точки зрения плавности хода автомобиля и устранения шума в кабине, шина должна поглощать небольшие неровности дороги и не передавать вызываемые ими вибрации на кузов. Это требует, прежде всего, увеличения податливости боковины шины, но лишь до такой степени, чтобы не допустить потери управляемости автомобиля. Жесткость боковины влияет на боковой увод колеса, возникающий при наличии осевой силы, действующей в плоскости, перпендикулярной оси вращения колеса.

Жесткость боковин шины определяет ее конструкция, и прежде всего способ наложения корда. На рис. 2 изображены различные типы шин: а диагональная с укладкой слоев корда под углом; б радиальная с укладкой слоев корда по радиусу шины с армирующими слоями под протектором; в диагональная улучшенного типа с армирующими слоями под протектором.

Прогресс в области шин направлен на создание все более низкопрофильных шин, имеющих меньшие потери на качение и лучшие показатели устойчивости и управляемости. Профиль шины оценивается процентным отношением его высоты к ширине. На рис. 3 показаны сечения шин серий «80»—«40». Наиболее широко применяется серия «70», а серия «40», например, предназначена уже только для гоночных автомобилей.

Поскольку передаточное отношение трансмиссий автомобиля рассчитывают с учетом диаметра колеса, то и при использовании низкопрофильной шины этот диаметр должен быть сохранен неизменным. Для этого шина должна монтироваться на обод большего диаметра. Это имеет свои положительные стороны: например, можно увеличить ширину и диаметр тормозов, что улучшит их охлаждение. Однако масса колеса увеличится, если не применить для его изготовления легкие сплавы.

Обычно используется допущение, что коэффициент сопротивления качению не зависит от скорости движения. В действительности это не так, поскольку конструкция, технология изготовления или материал шин оказывают влияние на изменение этого коэффициента, особенно при больших скоростях движения. На рис. 4 приведены реальные значения коэффициента сопротивления качению, измеренные у шин итальянской фирмы «Пирелли» серий «80»—«50».

При высоких скоростях отчетливо проявляется преимущество низкопрофильных шин серий «60» и «50». Например, шина HR/60 на скорости 160 км/ч имеет сопротивление качению на 26 % меньше, чем шина SR/80.

Среднее удельное давление в площади контакта у шины с упругой боковиной приблизительно равно давлению воздуха в шине. Поэтому как широкая, так и узкая шины одинаково нагруженного колеса будут иметь равный размер площади контакта с поверхностью дороги. Однако формы поверхности контакта будут различными. На рис. 5 показаны два колеса с шинами различной ширины и их отпечатки. Площадь обоих отпечатков одинакова, но у более широкой шины он растянут по ширине, у менее широкой — по длине. Как изображено на боковой проекции колеса, деформация широкой шины hs меньше, чем узкой hu . Это является причиной меньшего погружения колеса в мягкое покрытие и, следовательно, меньшего коэффициента сопротивления качению. Данное правило действует и на твердом покрытии, так как изменяется угол наезда α, образуемый между касательной к окружности колеса и поверхностью дороги в месте контакта ее с колесом. Коэффициент сопротивления качению измеряется при качении колеса по ровному покрытию, имеющему большую жесткость, что моделирует качение эластичного колеса по жесткому покрытию и приблизительно соответствует условиям качения шины по дороге с асфальтовым или бетонным покрытием [2]. В этом случае можно пренебречь влиянием деформации дорожного покрытия, и деформация колеса будет протекать таким образом, как показано на рис. 6. При статическом нагружении деформация симметрична, а равнодействующая сил проходит через центр тяжести отпечатка.

Колесо представляет собой пневматическую пружину с высокопрогрессивной характеристикой. Характеристику этой пружины можно получить путем нагружения колеса и измерения положения его центра тяжести в зависимости от величины нагрузки. При вращении шины каждую элементарную площадку на ее окружности можно считать самостоятельной, предварительно сжатой пружиной. Дополнительное сжатие этих парциальных пружин при контакте с дорогой требует затраты работы, которая увеличивает сопротивление качению шины. При выходе из контакта этих пружин после достижения максимального сжатия в среднем положении энергия, аккумулированная в них, высвобождается, и сила действует в направлении движения, уменьшая сопротивление качению. Для идеальной шины вложенная энергия была бы равна энергии высвобожденной, и колесо катилось бы без потерь.

Однако шина снабжена реальным протектором и, кроме того, в ней имеется внутреннее трение. При деформации протектора, помимо силы, необходимой для сжатия пневматической пружины, требуется сила для придания ускорения парциальной массе. Наличие внутреннего трения вызывает расход еще части энергии на разогрев шины. Следовательно, в первой половине цикла соприкосновения шины с дорогой должно быть развито усилие, достаточное для сжатия пружины, придания ускорения массе протектора и преодоления внутреннего трения. Однако во второй половине цикла вся сила сжатия пружины не высвободится, так как часть ее уйдет на придание обратного ускорения массе и на преодоление внутреннего трения. При вращении колеса на массу протектора воздействует также центробежная сила. Распределение удельных давлений по площади отпечатка будет поэтому неравномерным.

Равнодействующая всех сил расположена в первой половине отпечатка и удалена от оси колеса на расстояние s. За счет этого возникает момент сопротивления sG , который вызывает горизонтальное сопротивление H = G∙tgφ , где tgф = s/R = f ; G — нагрузка на шину.

В действительности, при передаче окружного усилия с шины на дорогу зависимости гораздо сложнее, но для наглядности объяснения приведенная выше упрощенная модель вполне пригодна. Так как центробежная сила и время сжатия зависят от окружной скорости ν , то и сопротивление качению также частично зависит от нее. Эта зависимость выражается уравнением

Значение f0 и в особенности показатель степени n , по мнению различных авторов, имеют весьма широкий диапазон. По Э. Эверлингу n = 1 ; В. Камм считает n = 2 , Андро n = 3,7 .

Для наших рассуждений о путях снижения сопротивления качению вполне пригодны реально измеренные значения коэффициента сопротивления (см. рис. 4) и влияние на него давления в шине (рис. 7). Из графиков на рис. 7 видно, что малое давление значительно увеличивает сопротивление качению, особенно при больших скоростях движения.

Как показано на рис. 4, до скорости 60—80 км/ч сопротивление качению несколько падает, но при больших скоростях резко увеличивается. Сверхнизкопрофильная шина серии VR/50 сохраняет небольшую величину сопротивления качению вплоть до скорости 200 км/ч. Таким же свойством обладает и шина HR/60.

Весьма опасным для шин является резонанс протектора, возникающий на высоких скоростях. При достижении определенных оборотов колеса могут начаться колебания элементов слоя протектора на пневматической пружине под влиянием постоянных импульсов сжатия при каждом повороте колеса. На поверхности шины в момент выхода ее из контакта с дорогой появляются статические волны, которые могут распространиться по всей окружности колеса. Резонанс протектора является причиной больших выделений теплоты и поэтому недопустим. При его возникновении в течение нескольких десятков секунд слой протектора может отделиться и, таким образом, возникнет аварийная ситуация.

Резонанс протектора резко повышает сопротивление качению, а рост энергии, потребляемой для преодоления сопротивления, сильно разогревает шину. Границы резонанса можно сдвинуть в сторону больших частот вращения колеса повышением внутреннего давления в шине и уменьшением массы протектора. Максимально допустимая скорость для отдельных типов шин фирмы «Пирелли» ограничивается следующим образом: SR — 180 км/ч; HR — 210 км/ч; VR — более 210 км/ч.

Снижение сопротивления качению у низкопрофильных шин весьма значительно и поэтому способствует повышению топливной экономичности. Фирма «Пирелли» гарантирует, что использование нового типа [3] шин «P8» вызывает уменьшение расхода топлива до 4 %, что соответствует снижению сопротивления качению на 20 %. Одновременно повышается срок службы шин. Шина «P8» относится к серии «65» и пригодна для использования на скоростях до 180 км/ч.

Низкопрофильные шины обладают большей жесткостью боковин, что проявляется в меньшей величине бокового увода. На рис. 8 показано влияние угла бокового увода на коэффициент сопротивления качению. Пунктирная кривая характеризует шины серии «80», сплошная — серии «60».

Одним из главных требований, предъявляемых к шинам, является обеспечение хорошего сцепления с поверхностью дороги. Оно обусловливается шириной профиля шины, рисунком протектора й качеством его материала. Для обеспечения максимального сцепления с поверхностью дороги у гоночных автомобилей применяются шины, изготовленные из особо мягкого материала с гладким протектором без рисунка. Мелкие углубления на поверхности протектора делаются лишь для контроля износа, который у этих шин при. малых пробегах достигает значительных размеров. Сопротивление качению у таких гладких шин меньше, чем у тех, которые снабжены протектором с рисунком.

Как видно из вышеизложенного, правильный выбор типа шины и соблюдение установленного внутреннего давления воздуха в них являются важными факторами, влияющими на уменьшение расхода топлива. Поскольку, однако, доля сопротивления качению в сумме общего сопротивления движению автомобиля значительно уменьшается с ростом скорости, то уменьшение этого вида сопротивления движению не означает пропорционального снижения расхода топлива. Так, уменьшение сопротивления качению шин на 10 % вызывает снижение потребления топлива лишь на 2 %. Низкопрофильные шины обеспечивают лучшие условия движения, что может приводить к увеличению скорости, при котором экономия топлива, достигнутая снижением сопротивления качению, практически сведется к нулю. В этом случае необходимо принимать в расчет, какое снижение расхода достигается уменьшением сопротивления качению шин и насколько увеличивается этот расход из-за роста скорости движения.

При действии боковой силы коэффициент сопротивления качению шины растет. Боковая сила возникает чаще всего при движении на поворотах. Чтобы не допустить при этом снижения скорости автомобиля, необходимо увеличить мощность двигателя. Боковая сила растет с ростом скорости и соответственно увеличивается сопротивление качению. Поэтому при прохождении поворотов на большой скорости потребление топлива увеличивается.

Поворот можно проезжать и способом плавного скольжения всех колес (так называемый управляемый занос автомобиля), что весьма эффективно, но при этом требуется значительная мощность двигателя. Все колеса автомобиля в таком случае отклонены от направления движения. Умение экономично проезжать поворот на большой скорости заключается в прохождении его с наименьшим буксованием колес.

Читайте также

Прибор для экономии топлива «D-POWER FUEL SAVER»: обещания производителя и «сказочный» принцип работы.

Механический КПД отражает соотношение между индикаторной и эффективной мощностью двигателя.

Как уменьшить сопротивление качению легкового автомобиля

Колесо — это самый эффективный способ преодолевать трение поверхности при транспортировки грузов, которое придумал человек. Из школьного курса физики всепомнят, что самый большой коэффициент трения имеют покоя или скольжения.

Сдвинуть шкаф, стоящий на ножках на деревянном полу иногда не под силу взрослому мужчине, тогда как тот же шкаф, с прикрученными к нему колёсиками или роликами, без труда сдвинет и ребёнок. Конечно при условии, что сопротивление качению этих роликов не слишком велико. Именно об этом физическом показателе мы и расскажем в этой статье.

В результате деформации покрышки из-за перемещения пятна контакта тратится значительное количество энергии. Она отнимается от общей кинетической энергии, вырабатываемой силовой установкой, колесо таким образом тормозит.

В зависимости от того, с какой скоростью автомобиль двигается, на сопротивление качению шин может расходоваться до 30% энергии, получаемой из топлива. Чем скорость выше, тем этот показатель меньше.

Понятно, что снижение этого показателя — это один из важнейших приоритетов шинных компаний. Существенное его уменьшение позволило бы резко увеличить экономичность движения на автомобиле.

Основной путь здесь — применение всё более совершенных материалов. Например, компании Michelin удалось добиться достаточно больших успехов в снижении трения качения, так опытные покрышки Optima на четверть меньше сопротивляются качению и весят на 20% меньше в сравнении с серией Michelin Energy.

Если в начале прошлого века хорошим уровнем считалось сопротивление в 25 кг/т, то сегодня французские шины показывают результат 6,5 кг/т. Приобрести >шины Michelin и других производителей можно сегодня в любом магазине, развитие технологий позволило сделать эти совершенные колёса доступными любому.

При этом воздействовать на этот показатель может и сам водитель автомобиля и не только в негативную сторону. Сопротивление качению зависит от таких конструктивных и эксплуатационных параметров, как давление воздуха в колёсах, техническое состояние подвески, температуры, снаряжённой массы автомобиля, состояния дорожного полотна.

Понятно, что как только давление в покрышке снижается, тут же возрастает пятно контакта и сопротивление. Абсолютно то же самое происходит и в случае сильного перегруза машины.

А вот прогретые шины, напротив, катят значительно лучше холодных, именно поэтому гонщики Формулы 1 на прогревочном круге виляют из стороны в сторону — таким образом они повышают температуру резины, чтобы уже на старте получить наиболее оптимальные характеристики.

Как зависит расход топлива от давления в шинах в реальных условиях эксплуатации?

Хотите сэкономить топливо- просто подкачайте колеса. Этот способ придумали фактически сразу после изобретения пневматической шины Джоном Данлопом в 1888 году. А насколько уменьшится расход топлива в случае с современными радиальными шинами — и в реальных условиях эксплуатации, моделируемых нашим циклом ARDC? Мы провели несколько замеров на проходящем в Авторевю ресурсные испытания седане Peugeot 408 с атмосферным мотором 1.6 (120 л.с.) и «автоматом».

Все мы хоть раз ездили на велосипеде и прекрасно помним, что на полуспущенных колесах крутить педали тяжелее. Все просто. Тот участок шины, что находится в контакте с дорогой, под нагрузкой деформируется, а затем, при вращении колеса, распрямляется обратно. Из-за того что в материале шины существует внутреннее трение, та энергия, что тратится на деформацию резины, частично переходит в тепловую и теряется навсегда. Накачивая колесо, мы уменьшаем деформацию шины под нагрузкой, а стало быть, и количество энергии, уходящей в нагрев колеса.

По оценкам шинников фирм Michelin и Continental, из всей затрачиваемой энергии в стандартном ездовом цикле NEDC на преодоление силы сопротивления качению уходит от 15 до 20%. А что будет в нашем цикле ARDC?

Колесо-Советск.RU

Некоторое количество энергии вырабатываемой топливом шина при движении колеса расходует на деформацию из-за смещения пятен контактов. Данная энергия отнимается из приданной шине кинетической энергии, и вследствие этого колесо замедляется. Около 25—30 процентов энергии топлива может затрачиваться на сопротивление качению. Хотя, данный % в большой степени зависит от скорости автомобиля. Он очень невелик на высоких скоростях.

Сопротивление качению связано с большим количеством эксплуатационных и конструктивных особенностей:

1) состояния дорожной поверхности

6) конструкции шины

В основном сопротивление качению связано с такими конструктивными характеристиками шин, таких как толщина и состояние протектора, число слоев и расположение нитей корда. Снижение численности слоев корда, толщины протектора, использование синтетических материалов и стекловолокна с небольшими утратами помогает снижению сопротивления качению. При увеличении размера шины т.е. диаметра при иных одинаковых обстоятельствах сопротивление качению тоже уменьшается.

«Не забывайте проверять давление в шинах». Проверено, что понижение давления в шинах всего на 0,1 атм. приносит повышение расхода топлива на 2-3 %. Определить на глаз шину с давлением 1, 2 атм. от 2,0 атм. способен не каждый человек, однако водитель, хозяин автомобиля с подспущенными шинами, дожжен будет затрачивать на каждой заправке своего автомобиля лишние деньги.

Завышение предельно допустимого давления в шинах чрезвычайно опасно на скользкой и мокрой дороге. Ни в коем случае нельзя применять этот метод зимой, так как расходы на ремонт автомобиля после ДТП, могут во много раз быть больше по сравнению со средствами сэкономленными от бензина.

С 1 ноября в странах Евросоюза введены обязательные этикетки для производителей шин, облегчающие выбор потребителю.

По новым требованиям, новые шины обязаны иметь дополнительную этикетку с указанием таких ключевых характеристик, как сопротивление качению, сцепление на мокрой дороге и уровень внешнего шума.

Чем меньше сопротивление качению при движении шины, тем меньше энергии рассеивается и, соответственно, тем меньше требуется топлива для продолжения движения. Сопротивление качению составляет до 20% расхода топлива легкового автомобиля и до 30% грузового. Поэтому топливная эффективность помогает снизить прямые расходы и выбросы углекислого газа. Разница между шинами классов G и A по маркировке значительна. В расчете на четыре шины для легкового автомобиля экономия за период использования шин может составить до 300 евро на покрышку благодаря сокращению расхода топлива на 7,5%.

Для больших грузовиков с увеличенным числом колес финансовая разница может быть еще больше. Так, при использовании шин класса A по сопротивлению качению вместо шин G грузовая компания может сэкономить более 5 тыс. евро за период эксплуатации шин.

Ожидается, что использование шин с улучшенными показателями сопротивления качению, а маркировка упростит процедуру, позволит сократить выброс углекислого газа в Европе на 20 млн тонн в год и экономить 10 млрд евро ежегодно.

Величину силы сопротивления качению (условно это Ск) можно расчитать по следующей формуле:
Ск = f G,

где Ск — сила сопротивления качению в кг;

G — вес авто в кг;

f — коэффициент сопротивления качению, который учитывает действие сил деформации шин и грунта, а также трение между ними в различных дорожных условиях.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x
()
x
Adblock
detector